当前位置: 首页>>代码示例>>Python>>正文


Python PlotUtilities.no_x_label方法代码示例

本文整理汇总了Python中GeneralUtil.python.PlotUtilities.no_x_label方法的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities.no_x_label方法的具体用法?Python PlotUtilities.no_x_label怎么用?Python PlotUtilities.no_x_label使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GeneralUtil.python.PlotUtilities的用法示例。


在下文中一共展示了PlotUtilities.no_x_label方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def run(base="./"):
    """
    
    """
    name = "examples.pdf"
    data_base = base + "data/"
    file_names = ["protein","fast_unfolding","low-snr","ringing"]
    kw = dict(cache_directory=data_base,force=False)
    file_paths = [data_base + f +".csv" for f in file_names]
    cases = [read_and_cache_file(f,**kw) for f in file_paths]
    for c in cases:
        split_fec = Analysis.zero_and_split_force_extension_curve(c)
        name = c.Meta.Name
        num = 0
        retract_idx = split_fec.get_predicted_retract_surface_index()
        split_fec.retract.Force -= \
            np.percentile(split_fec.retract.Force[retract_idx:],25)
        predicted_event_idx = Detector.predict(c,threshold=1e-2)
        fig = PlotUtilities.figure((8,4))
        plot_retract_with_events(split_fec)
        num = label_and_save(fig=fig,name=name,num=num)
        fig = PlotUtilities.figure((8,4))
        plot_events_by_colors(split_fec,predicted_event_idx)
        num = label_and_save(fig=fig,name=name,num=num)
        fig = PlotUtilities.figure((6,10))
        plt.subplot(2,1,1)
        plot_events_by_colors(split_fec,predicted_event_idx,plot_filtered=True)
        PlotUtilities.lazyLabel("","Force (pN)","")
        PlotUtilities.no_x_label()
        plt.subplot(2,1,2)
        plot_state_transition_diagram(split_fec,predicted_event_idx)
        num = label_and_save(fig=fig,name=name,num=num,ylabel="State")
开发者ID:prheenan,项目名称:Research,代码行数:34,代码来源:main_figure_pathological.py

示例2: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def run():
    """
    Describes why we are picking the fluorophores we are
    """
    # get the excitation filter
    filter_file = "lumencor_631_28_nm.txt"
    arr = np.loadtxt(filter_file,skiprows=1)
    wavelength,filter_value = arr[:,0],arr[:,1]
    # convert from 0 to 1 transmission (from 0 to 100)
    filter_value /= 100
    # get the fluorophore
    # (see: http://www.fluorophores.tugraz.at/substance/418)
    fluorophore_file = "atto_5382.csv"
    arr = np.loadtxt(fluorophore_file,skiprows=1,delimiter=";",
                     usecols=(0,1,2,3))
    wavelength_fluorophore_excitation_nm,excitation = arr[:,0],arr[:,1]
    wavelength_fluorophore_emission_nm,emission = arr[:,2],arr[:,3]
    # get the emission filter 
    # see: laser2000.co.uk/semrock_filter.php?code=FF01-680/42-25
    emission_filter_file = "FF01-680_42.txt"
    arr_emit = np.loadtxt(emission_filter_file,skiprows=4)
    wavelength_emission_filter,emission_filter = arr_emit[:,0],arr_emit[:,1]
    # plot the fluorophores
    label_excite_emit = "\n({:s})".format(fluorophore_file)
    wavelength_limits_nm = [500,800]
    fig = PlotUtilities.figure((5,6))
    plt.subplot(2,1,1)
    plt.plot(wavelength,filter_value,
             label=("Filter (excitation)\n" +  filter_file))
    plt.plot(wavelength_fluorophore_excitation_nm,excitation,
             label="Fluorophore Excitation" + label_excite_emit,
             linestyle='--')
    PlotUtilities.lazyLabel("","Excitation efficiency","")
    plt.xlim(wavelength_limits_nm)
    PlotUtilities.no_x_label()
    plt.subplot(2,1,2)
    plt.plot(wavelength_emission_filter,emission_filter,
             label="Filter (emission) \n" + emission_filter_file)
    plt.plot(wavelength_fluorophore_emission_nm,emission,
             label="Flurophore Emission" + label_excite_emit,
             linestyle='--')
    plt.xlim(wavelength_limits_nm)
    PlotUtilities.lazyLabel("Wavelength (nm)","Emission efficiency","")
    PlotUtilities.savefig(fig,"./filter_comparisons.png")
    p1607F,_ = CommonPrimerUtil.Get1607FAnd3520R("../..")
    # add a dbco and a fluorophore...
    seq_full = [IdtUtil.Dbco5Prime()] + [s for s in p1607F] + \
               [IdtUtil.atto_633()]
    # get the IDT order
    opts = dict(Scale=IdtUtil.Scales._100NM,
                Purification=IdtUtil.Purifications.HPLC)
    order = IdtUtil.\
            SequencesAndNamesTuplesToOrder( [(seq_full,"AzideTestFluorophore")],
                                            **opts)
    IdtUtil.PrintAndSave(order,"./test_azide_fluorophore.txt")
开发者ID:prheenan,项目名称:Research,代码行数:57,代码来源:main_fluorescent_primers.py

示例3: plot_subplot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def plot_subplot(subplots,base):
    n_subplots = len(subplots)
    for i,(name,x,y,range_x,range_y,reversed_flag) in enumerate(subplots):
        plt.subplot(n_subplots,1,(i+1))
        in_file = base + name + ".png"
        im = plt.imread(in_file)
        extent = list(range_x) + list(range_y)
        if (not reversed_flag):
            origin= 'upper'
        else:
            origin = 'lower'
        plt.imshow(im,extent=extent,aspect="auto",origin=origin,
                   interpolation='bilinear')
        if (reversed_flag):
            plt.ylim
        if (i != n_subplots-1):
            PlotUtilities.no_x_label()
        PlotUtilities.lazyLabel(x,y,"")
开发者ID:prheenan,项目名称:Research,代码行数:20,代码来源:main_previous_work.py

示例4: make_detalied_plots

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def make_detalied_plots(data_to_analyze,areas):
    """
    makes the detailed plots
    """
    kwargs = landscape_kwargs()
    y_limits_pN = [None,None,125,100]
    for i,a in enumerate(areas):
        fig = PlotUtilities.figure((3.25,5))
        mdata = data_to_analyze[i]
        example = mdata.landscape[0]
        ax = create_landscape_plot(mdata,xlim=None,zero_q=False,**kwargs[i])
        ax_heat = ax[0]
        PlotUtilities.no_x_label(ax_heat)
        ax_heat.relim()
        ax_heat.set_ylim([None,y_limits_pN[i]])
        out_name = "landscape{:d}_{:s}".format(i,areas[i].plot_title)
        axis_func = lambda x: [x[0],x[2]]
        PlotUtilities.label_tom(fig,axis_func=axis_func)
        PlotUtilities.save_png_and_svg(fig,out_name.replace(" ","_"))    
开发者ID:prheenan,项目名称:Research,代码行数:21,代码来源:main_landscapes.py

示例5: plot_with_background_corrected

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def plot_with_background_corrected(args,imshow_kw_list=None):
    n = len(args)
    fig = PlotUtilities.figure((3.5,2*n))
    for i,a in enumerate(args):
        ax = plt.subplot(n,1,(i+1))
        m_list = imshow_kw_list[i]
        if (m_list['cmap'] == plt.cm.afmhot):
            vmin,vmax = realistic_min_max(a)
        else:
            vmin,vmax = 0,None
        imshow_kwargs = dict(vmin=vmin,vmax=vmax,**m_list)
        im = ImageUtil.make_image_plot(a,pct=50,imshow_kwargs=imshow_kwargs)
        if (i == 0):
            ImageUtil.smart_colorbar(im=im,ax=ax,fig=fig)
        if (i < n-1):
            PlotUtilities.xlabel("",ax=ax)
            PlotUtilities.no_x_label(ax=ax)
            ImageUtil.smart_colorbar(im=im,ax=ax,fig=fig,add_space_only=True)
        else:
            ImageUtil.smart_colorbar(im=im,ax=ax,fig=fig,add_space_only=True)
    return fig
开发者ID:prheenan,项目名称:Research,代码行数:23,代码来源:main_bulk_analysis.py

示例6: make_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def make_plot(retract,pred_info,event,interp_raw,probability_idx,
              surface_idx,use_previous=True,use_surface_shading=True):
    # get the plotting information
    style_raw = dict(color='k',alpha=0.3)
    style_interp = dict(color='k',alpha=1)
    x_plot,y_plot = Plotting.plot_format(retract)
    min_x,max_x = min(x_plot),max(x_plot)/3
    fudge_x = abs(max_x-min_x) * 0.05
    xlim = np.array([min_x-fudge_x,max_x+fudge_x])
    probabilities = pred_info.probabilities
    probability_min = np.min([min(p) for p in probabilities])
    before_slice = event
    after_slice = slice(event.stop,None,1)
    surface_plot = lambda label : \
        plt.axvspan(min(x_plot),x_plot[surface_idx],alpha=0.2,color='k',
                    label=label)
    color_plot = lambda x,y,**kw : \
                 Plotting.before_and_after(x,y,before_slice,after_slice,**kw)
    plt.subplot(2,1,1)
    color_plot(x_plot,y_plot,style=dict(alpha=0.3))
    color_plot(x_plot,f_plot_y(interp_raw))
    if (use_surface_shading):
        surface_plot(None)
    PlotUtilities.x_label_on_top()
    PlotUtilities.lazyLabel("Time (s)","Force (pN)","")
    plt.xlim(xlim)
    plt.subplot(2,1,2)
    if (use_previous and (probability_idx != 0)):
        plt.semilogy(x_plot,probabilities[probability_idx-1],color='k',
                     alpha=0.3,linestyle='--',label="Previous")
    plt.semilogy(x_plot,probabilities[probability_idx],label="Probability",
                 color='k')
    plt.xlim(xlim)
    plt.ylim([probability_min/2,2])
    if (use_surface_shading):
        surface_plot("Surface")
    PlotUtilities.no_x_label()
    PlotUtilities.lazyLabel("","Probability","",loc="lower right")
开发者ID:prheenan,项目名称:Research,代码行数:40,代码来源:main_figure_path.py

示例7: helical_gallery_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def helical_gallery_plot(helical_areas,helical_data,helical_kwargs):
    axs,first_axs,second_axs = [],[],[]
    offset_y = 0.2
    kw_scalebars = [dict(offset_x=0.35,offset_y=offset_y),
                    dict(offset_x=0.35,offset_y=offset_y),
                    dict(offset_x=0.35,offset_y=offset_y)]
    xlims = [ [None,None],[None,None],[None,15]    ]   
    arrow_x = [0.60,0.62,0.55]
    arrow_y = [0.58,0.60,0.45]
    for i,a in enumerate(helical_areas):
        data = helical_data[i]
        kw_tmp = helical_kwargs[i]
        data_landscape = landscape_data(data.landscape)
        # # plot the energy landscape...
        ax_tmp = plt.subplot(1,len(helical_areas),(i+1))
        axs.append(ax_tmp)
        kw_landscape = kw_tmp['kw_landscape']
        color = kw_landscape['color']      
        ax_1, ax_2 = plot_landscape(data_landscape,xlim=xlims[i],
                                    kw_landscape=kw_landscape,
                                    plot_derivative=True)
        first_axs.append(ax_1)                                 
        second_axs.append(ax_2)                    
        PlotUtilities.tom_ticks(ax=ax_2,num_major=5,change_x=False)       
        last_idx = len(helical_areas)-1
        ax_1.annotate("",xytext=(arrow_x[i],arrow_y[i]),textcoords='axes fraction',
                      xy=(arrow_x[i]+0.2,arrow_y[i]),xycoords='axes fraction',
                      arrowprops=dict(facecolor=color,alpha=0.7,
                                      edgecolor="None",width=4,headwidth=10,
                                      headlength=5))
        if (i > 0):
            PlotUtilities.ylabel("")
            PlotUtilities.xlabel("")
        if (i != last_idx):
            ax_2.set_ylabel("")
            PlotUtilities.no_x_label(ax_1)
            PlotUtilities.no_x_label(ax_2)            
        PlotUtilities.title(a.plot_title,color=color)
    normalize_and_set_zeros(first_axs,second_axs)
    # after normalization, add in the scale bars 
    for i,(ax_1,ax_2) in enumerate(zip(first_axs,second_axs)):
        Scalebar.x_scale_bar_and_ticks_relative(unit="nm",width=5,ax=ax_2,
                                                **kw_scalebars[i])
        PlotUtilities.no_x_label(ax_2)     
开发者ID:prheenan,项目名称:Research,代码行数:46,代码来源:main_landscapes.py

示例8: plot_residual

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def plot_residual(x_plot,diff_raw,style_raw):
    plt.plot(x_plot,f_plot_y(diff_raw),**style_raw)
    PlotUtilities.lazyLabel("","Residual (pN)","")
    PlotUtilities.no_x_label()
开发者ID:prheenan,项目名称:Research,代码行数:6,代码来源:main_figure_noise.py

示例9: rupture_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]

#.........这里部分代码省略.........
    index_absolute = index_after_event + slice_event_subplot.start
    rupture_time = x[index_absolute]
    # update all the slices
    slice_before_zoom = slice(zoom_start_idx,index_absolute)
    slice_after_zoom = slice(index_absolute,zoom_end_idx)
    slice_before_event = slice(0,index_absolute,1)
    slice_after_event = slice(index_absolute,None,1)
    x_zoom = x[slice_event_subplot]
    f_zoom = force[slice_event_subplot]
    ylim = [-30,max(force)*2]
    xlim = [0,1.3]
    xlim_zoom = [min(x_zoom),max(x_zoom)]
    ylim_zoom = [min(f_zoom),max(f_zoom)]
    # get the second zoom
    second_zoom = int(points_around/zoom_factor)
    zoom_second_before = slice(index_absolute-second_zoom,index_absolute)
    zoom_second_after  = slice(index_absolute,index_absolute+second_zoom)
    slice_second_zoom = slice(zoom_second_before.start,
                              zoom_second_after.stop)
    x_second_zoom = x[slice_second_zoom]
    force_second_zoom = force[slice_second_zoom]
    xlim_second_zoom = [min(x_second_zoom),max(x_second_zoom)]
    ylim_second_zoom = [min(force_second_zoom),max(force_second_zoom)]
    # plot everything
    n_rows = 3
    n_cols = 1
    fudge_y = 5
    ylabel = "Force (pN)"
    ax1 = plt.subplot(n_rows,n_cols,1)
    style_data = dict(alpha=0.5,linewidth=1)
    style_filtered = dict(alpha=1.0,linewidth=3)
    # plot the force etc
    Plotting.before_and_after(x,force,slice_before_event,slice_after_event,
                              style_data,label="Raw (25kHz)")
    Plotting.before_and_after(x,force_filtered,slice_before_event,
                              slice_after_event,style_filtered,
                              label="Filtered (25Hz)")
    legend_kwargs = dict(handlelength=1)
    PlotUtilities.lazyLabel("Time (s)",ylabel,"",loc="upper right",
                            frameon=False,legend_kwargs=legend_kwargs)
    plt.ylim(ylim)
    plt.xlim(xlim)
    ax1.xaxis.tick_top()
    ax1.xaxis.set_label_position('top') 
    marker_size=90
    Plotting.plot_arrows_above_events([index_absolute],x,force_filtered,
                                      fudge_y=fudge_y*4.5,
                                      markersize=marker_size)
    # plot the rupture
    # These are in unitless percentages of the figure size. (0,0 is bottom left)
    # zoom-factor: 2.5, location: upper-left
    ax2 = plt.subplot(n_rows,n_cols,2)
    style_data_post_zoom = dict(style_data)
    post_alpha = style_data['alpha']
    style_data_post_zoom['alpha']=post_alpha
    style_filtered_post_zoom = dict(style_filtered)
    style_filtered_post_zoom['alpha']=1
    Plotting.before_and_after(x,force,slice_before_zoom,slice_after_zoom,
                              style_data_post_zoom)
    plot_rupture = lambda l: Plotting.\
        plot_arrows_above_events([index_after_event],x_event_both,
                                 predicted_both,fudge_y=fudge_y,
                                 markersize=marker_size)
    plot_line = lambda l :  plt.plot(x_event_both[:index_after_event+1],
                                     predicted_both[:index_after_event+1],
                                     color='m',
                                     linestyle='-',linewidth=3,label=l)
    plot_rupture('Rupture')
    plot_line("Fit")
    PlotUtilities.lazyLabel("",ylabel,"",frameon=False,
                            loc='upper right',
                            legend_kwargs=dict(numpoints=1,**legend_kwargs))
    plt.xlim(xlim_zoom)
    plt.ylim(ylim_zoom)
    # make a scale bar for this plot
    scale_width = 0.01
    string = "{:d} ms".format(int(scale_width*1000))
    get_bar_location = lambda _xlim: np.mean([np.mean(_xlim),min(_xlim)])
    PlotUtilities.scale_bar_x(get_bar_location(xlim_zoom),
                              -12,s=string,width=scale_width)
    PlotUtilities.no_x_label()
    ax3 = plt.subplot(n_rows,n_cols,3)
    Plotting.before_and_after(x,force,zoom_second_before,zoom_second_after,
                              style_data_post_zoom)
    plt.xlim(xlim_second_zoom)
    plt.ylim(ylim_second_zoom)
    plot_rupture("")
    plot_line("")
    PlotUtilities.lazyLabel("",ylabel,"")
    # make a scale bar for this plot
    scale_width = scale_width/zoom_factor
    string = "{:.1f} ms".format(scale_width*1000)
    PlotUtilities.scale_bar_x(get_bar_location(xlim_second_zoom),
                              0,s=string,width=scale_width)
    PlotUtilities.no_x_label()
    # draw lines connecting the plots
    if (ax1_labels):
        PlotUtilities.zoom_effect01(ax1, ax2, *xlim_zoom)
    if (ax2_labels):
        PlotUtilities.zoom_effect01(ax2, ax3, *xlim_second_zoom)
开发者ID:prheenan,项目名称:Research,代码行数:104,代码来源:main_figure_rupture.py

示例10: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    in_dir = "in/"
    out_dir = "out/"
    ext = ".pkl"
    ext_text = ".txt"
    GenUtilities.ensureDirExists(out_dir)
    image_files = GenUtilities.getAllFiles(in_dir,ext=ext)
    text_files = GenUtilities.getAllFiles(in_dir,ext=ext_text)
    # filter only to those image files which are 2um
    size_images_meters = 2e-6
    size_images_pixels = 512
    conversion_meters_per_px = size_images_meters / size_images_pixels  
    objs_all = list(yield_files(image_files,text_files,size_images_meters))
    name_func = lambda i,d: "{:s}_img_{:d}".format(d.file_name,i)
    load_func = lambda : yield_files(image_files,text_files,size_images_meters)
    objs_all = CheckpointUtilities.multi_load(cache_dir=out_dir,
                                              load_func=load_func,
                                              force=True,name_func=name_func)
    for o in objs_all:
        im = o.image.height_nm_rel()
        assert (im.shape[0] == im.shape[1])
        assert (im.shape[0] == size_images_pixels)
    kw = dict(min_m = 0,max_m = 125e-9)
    polymer_info_obj = PolymerTracing.ensemble_polymer_info(objs_all,**kw)
    fig = PlotUtilities.figure()
    PolymerPlotting.plot_angle_information(polymer_info_obj)
    PlotUtilities.savefig(fig,out_dir + "angles.png")
    # POST: all the contour lengths are set in 'real' units ]
    L0_protein = np.concatenate([o.L0_protein_dna() for o in objs_all])
    L0_dna = np.concatenate([o.L0_dna_only() for o in objs_all])
    print_info(L0_dna,"only DNA")
    print_info(L0_protein,"DNA+PRC2")
    n_protein = (L0_protein).size
    n_dna = L0_dna.size
    fig = PlotUtilities.figure()            
    n_str = lambda n: "\n(N={:d})".format(n)
    sanit_L0 = lambda x: x*1e6    
    L0_dna_plot = sanit_L0(L0_dna)
    L0_protein_plot = sanit_L0(L0_protein)
    xmin = np.min(np.concatenate([L0_dna_plot,L0_protein_plot]))
    xmax = np.max(np.concatenate([L0_dna_plot,L0_protein_plot]))
    n_bins = 12
    step = sanit_L0(50e-9)
    bins = np.arange(start=0,stop=xmax+step,step=step)
    n_bins = bins.size
    xlim = [0,xmax*1.1]
    kw_dna = dict(color='g',alpha=0.3)
    kw_protein = dict(color='b',hatch='//',alpha=0.7)
    ax= plt.subplot(2,1,1)
    micron_str = "$\mathrm{\mu m}$"
    prob_str = "P (1/" + micron_str + ")"
    lazy_kw = dict(loc='center left')
    prh_hist(L0_dna_plot,normed=True,bins=bins,
             label="DNA Only" + n_str(n_dna),**kw_dna)
    PlotUtilities.lazyLabel("",prob_str,"",**lazy_kw)
    PlotUtilities.no_x_label(ax)
    plt.xlim(xlim)
    plt.subplot(2,1,2)    
    prh_hist(L0_protein_plot,normed=True,bins=bins,
             label="DNA+PRC2" + n_str(n_protein),**kw_protein)
    PlotUtilities.lazyLabel("L$_0$ (" + micron_str + ")",prob_str,"",
                            **lazy_kw)
    plt.xlim(xlim)
    PlotUtilities.savefig(fig,out_dir + "hist.png",
                          subplots_adjust=dict(hspace=0.03))
    for obj in objs_all:
        # plot each image with all the traces overlayed
        fig = PlotUtilities.figure()        
        plt.imshow(obj.image.height_nm_rel())
        # plot each DNA trace
        for o in obj.worm_objects:
            xy_abs = o.inf.x_y_abs
            color = "g" if o.has_dna_bound_protein else "r"
            plt.plot(*xy_abs,color=color,linewidth=0.25)
        out_name = os.path.basename(obj.image_path)
        PlotUtilities.savefig(fig,out_dir + out_name + ".png")
开发者ID:prheenan,项目名称:Research,代码行数:87,代码来源:main_image_analysis.py

示例11: make_metric_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def make_metric_plot(metrics,
                     xlim_dist=[1e-5,2],
                     xlim_load=[1e-2,1e5],
                     xlim_rupture=[-120,320]):
    colors = Plotting.algorithm_colors()
    n_rows = 3
    n_cols = 3
    legend_locs = ['upper right','upper left','upper left']
    titles = ["FEATHER","Fovea","Wavelet"]
    legend_loading = [None,None,None]
    legend_kwargs_style = dict(fontsize=8,handlelength=0.75,handletextpad=0.25)
    for i,m in enumerate(metrics):
        offset = n_rows * i
        # the first column gets the algorithm label; the first row gets the
        # metric label
        kw_tmp = dict(title_kwargs=dict(fontweight='bold',color='b',fontsize=9),
                      legend_kwargs=legend_kwargs_style)
        if offset == 0:
            title_dist = "Location error"
            title_load = r"Loading rate (NuG2 + $\mathbf{\alpha_3}$D)"
            title_rupture_force = r"Rupture force (NuG2 + $\mathbf{\alpha_3}$D)"
        else:
            title_dist,title_load,title_rupture_force = "","",""
        # only have an x label on the last row
        last_row = (offset/n_rows == n_rows-1)
        if (last_row):
            xlabel_dist = "Relative Error ($\mathbf{x_k}$)"
            xlabel_load = "Loading Rate (pN/s)"
            xlabel_rupture_force = \
                PlotUtilities.variable_string("F_R")
        else:
            xlabel_dist, xlabel_load,xlabel_rupture_force = "","",""
        n_string = r"N_{\mathrm{" + "{:s}".format(titles[i]) + "}}"
        ylabel_dist = PlotUtilities.variable_string(n_string)
        color_pred=colors[i]
        color_true = 'g'
        # get the formatting dictionaries for the various plots 
        distance_histogram_kw= \
            Plotting.event_error_kwargs(m,color_pred=color_pred,
                                        label_bool=False)
        true_style_histogram = Plotting.\
            _histogram_true_style(color_true=color_true,label="true")
        pred_style_histogram = Plotting.\
            _histogram_predicted_style(color_pred=color_pred,label="predicted")
        # get the binning for the rupture force and loading rates
        true,pred = m.true,m.pred        
        ruptures_true,loading_true = \
            Learning.get_rupture_in_pN_and_loading_in_pN_per_s(true)
        ruptures_pred,loading_pred = \
            Learning.get_rupture_in_pN_and_loading_in_pN_per_s(pred)
        _lim_force_plot,_bins_rupture_plot,_lim_load_plot,_bins_load_plot = \
            Learning.limits_and_bins_force_and_load(ruptures_pred,ruptures_true,
                                                    loading_true,loading_pred,
                                                    limit=False)            
        # # make the 'just the distance' figures
        ax_dist = plt.subplot(n_rows,n_cols,(offset+1))
        Plotting.histogram_event_distribution(use_q_number=True,
                                              **distance_histogram_kw)
        PlotUtilities.lazyLabel(xlabel_dist,ylabel_dist,title_dist,
                                loc=legend_locs[i],legendBgColor='w',
                                frameon=False,**kw_tmp)
        PlotUtilities.ylabel(ylabel_dist,fontweight='bold')
        plt.xlim(xlim_dist)                                   
        if not last_row:
            PlotUtilities.no_x_label(ax_dist)
        tick_style_log()
        # # make the loading rate histogram      
        ax_load = plt.subplot(n_rows,n_cols,(offset+2))
        Plotting.loading_rate_histogram(pred,bins=_bins_load_plot,
                                        **pred_style_histogram)
        Plotting.loading_rate_histogram(true,bins=_bins_load_plot,
                                        **true_style_histogram)
        plt.xscale('log')
        plt.yscale('log')
        PlotUtilities.lazyLabel(xlabel_load,"",title_load,
                                legendBgColor='w',
                                loc='upper left',frameon=False,**kw_tmp)
        plt.xlim(xlim_load)               
        if not last_row:
            PlotUtilities.no_x_label(ax_load)
        # get the locations
        if legend_loading[i] is not None:
            PlotUtilities.legend(loc=(legend_loading[i]),**legend_kwargs_style)
        PlotUtilities.no_y_label(ax_load)
        tick_style_log()
        # # make the rupture force histogram
        ax_rupture = plt.subplot(n_rows,n_cols,(offset+3))
        Plotting.rupture_force_histogram(pred,bins=_bins_rupture_plot,
                                        **pred_style_histogram)
        Plotting.rupture_force_histogram(true,bins=_bins_rupture_plot,
                                        **true_style_histogram)
        PlotUtilities.lazyLabel(xlabel_rupture_force,"",title_rupture_force,
                                useLegend=False,**kw_tmp)       
        plt.xlim(xlim_rupture)                                                 
        plt.yscale('log')
        if not last_row:
            PlotUtilities.no_x_label(ax_rupture)     
        PlotUtilities.no_y_label(ax_rupture)                
        tick_style_log(change_x=False)           
        # set all the y limits for this row
#.........这里部分代码省略.........
开发者ID:prheenan,项目名称:Research,代码行数:103,代码来源:main_performance_figure.py

示例12: make_pedagogical_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def make_pedagogical_plot(data_to_plot,kw,out_name="./iwt_diagram"):
    heatmap_data = data_to_plot.heatmap_data
    data = landscape_data(data_to_plot.landscape)
    fig = PlotUtilities.figure((3.25,5))
    # # ploy the heat map 
    ax_heat = plt.subplot(3,1,1)
    heatmap_plot(heatmap_data,data.amino_acids_per_nm(),
                 kw_heatmap=kw['kw_heatmap'])
    xlim_fec = plt.xlim()
    PlotUtilities.no_x_label(ax_heat)    
    ax_heat.set_ylim([0,150])
    PlotUtilities.no_x_label(ax_heat)
    PlotUtilities.no_y_label(ax_heat)   
    fontsize_scalebar = 6 
    common_kw = dict(color='w',fontsize=fontsize_scalebar)
    x_font,y_font = Scalebar.\
        font_kwargs_modified(x_kwargs=common_kw,
                             y_kwargs=common_kw)
    heat_kw_common = dict(line_kwargs=dict(color='w',linewidth=1.5))
    x_heat_kw = dict(width=15,unit="nm",font_kwargs=x_font,**heat_kw_common)
    y_heat_kw = dict(height=30,unit='pN ',font_kwargs=y_font,**heat_kw_common)
    # add a scale bar for the heatmap...
    scale_bar_x = 0.83
    Scalebar.crossed_x_and_y_relative(scale_bar_x,0.55,ax=ax_heat,
                                      x_kwargs=x_heat_kw,
                                      y_kwargs=y_heat_kw)
    jcp_fig_util.add_helical_boxes(ax=ax_heat,ymax_box=0.9,alpha=1.0,
                                   font_color='w',offset_bool=True)
    # # plot the energy landscape...
    ax_correction = plt.subplot(3,1,2)    
    plot_with_corrections(data)
    PlotUtilities.no_x_label(ax_correction)
    PlotUtilities.lazyLabel("","Energy (kcal/mol)","")
    ax_correction.set_xlim(xlim_fec)            
    offset_y_pedagogy = 0.42
    setup_pedagogy_ticks(ax_correction,scale_bar_x,x_heat_kw,y_heat_kw,
                         offset_y=offset_y_pedagogy)
    legend_font_size = 9                         
    legend = PlotUtilities.legend(handlelength=1.5,loc=(0.15,0.07),ncol=3,
                                  fontsize=legend_font_size,handletextpad=0.4)
    for i,text in enumerate(legend.get_texts()):
        plt.setp(text, color = kwargs_correction()[i]['color'])    
    # make the inset plot 
    axins = zoomed_inset_axes(ax_correction, zoom=3, loc=2,
                              borderpad=0.8) 
    plot_with_corrections(data)
    xlim_box = [1,5]
    ylim_box = [-3,28]
    plt.xlim(xlim_box)
    plt.ylim(ylim_box)
    PlotUtilities.no_x_anything(axins)
    PlotUtilities.no_y_anything(axins)
    # add in scale bars
    kw_common = dict(line_kwargs=dict(linewidth=0.75,color='k'))
    common_font_inset = dict(fontsize=fontsize_scalebar)
    x_kwargs = dict(verticalalignment='top',**common_font_inset)
    x_font,y_font = Scalebar.\
        font_kwargs_modified(x_kwargs=x_kwargs,
                             y_kwargs=dict(horizontalalignment='right',
                                           **common_font_inset))
    # set up the font, offset ('fudge') the text from the lines                              
    fudge_x = dict(x=0,y=-0.5)
    fudge_y = dict(x=0,y=0.1)
    Scalebar.crossed_x_and_y_relative(0.55,0.66,ax=axins,
                                      x_kwargs=dict(width=2,unit="nm",
                                                    font_kwargs=x_font,
                                                    fudge_text_pct=fudge_x,
                                                    **kw_common),
                                      y_kwargs=dict(height=8,unit='kcal/\nmol',
                                                    font_kwargs=y_font,
                                                    fudge_text_pct=fudge_y,                                                    
                                                    **kw_common))
    # draw a bbox of the region of the inset axes in the parent axes and
    # connecting lines between the bbox and the inset axes area
    color_box = 'rebeccapurple'           
    PlotUtilities.color_frame('rebeccapurple',ax=axins) 
    Annotations.add_rectangle(ax_correction,xlim_box,ylim_box,edgecolor=color_box)
    ax_correction.set_xlim(xlim_fec)
    ax_energy = plt.subplot(3,1,3)    
    plot_landscape(data,xlim_fec,kw_landscape=kw['kw_landscape'],
                   plot_derivative=False,label_deltaG=" ")
    ax_energy.set_xlim(xlim_fec)                         
    setup_pedagogy_ticks(ax_energy,scale_bar_x,x_heat_kw,y_heat_kw,
                         offset_y=offset_y_pedagogy)
    # add in the equation notation
    strings,colors = [],[]
    labels = kwargs_labels()
    # add in the appropriate symbols 
    strings = ["$\Delta G$ = ",labels[0]," + ",labels[1]," - ",labels[2]]
    colors_labels = [c['color'] for c in kwargs_correction()]
    colors = ["k"] + [item for list in [[c,"k"] for c in colors_labels]
                      for item in list]
    x,y = Scalebar.x_and_y_to_abs(x_rel=0.08,y_rel=0.85,ax=ax_energy)        
    Annotations.rainbow_text(x,y,strings=strings,colors=colors,
                             ax=ax_energy,size=legend_font_size)
    PlotUtilities.legend(handlelength=0.5,loc=(0.03,0.8))                             
    PlotUtilities.no_x_label(ax_energy)                         
    PlotUtilities.save_png_and_svg(fig,out_name)  
开发者ID:prheenan,项目名称:Research,代码行数:100,代码来源:main_landscapes.py

示例13: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def run():
    """
    <Description>q

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    in_dir = None
    flickering_dir = "../Data/fec/"
    # XXX use the flickering dir for stuff
    cache_dir = flickering_dir 
    GenUtilities.ensureDirExists(flickering_dir)
    force_read_data = False
    raw_data = IoUtilHao.read_and_cache_data_hao(flickering_dir,
                                                force=force_read_data,
                                                 cache_directory=flickering_dir,
                                                 limit=3)
    example = raw_data[0]                                                 
    example_plot = copy.deepcopy(example)
    # fix the manual offset
    example_plot.LowResData.force -= 7.1
    plot_examples = [example_plot]
    vel_m_per_s = example_plot.Velocity
    x_func = lambda y: y.Separation
    y_func = lambda y: y.Force 
    ylim_pN = [-20,155]
    xlim_nm = [5,75]
    zoom_regions_nm = [ [61.5,63.6]]
    adhesion_max_nm = 19
    region_labels = ["ED Helix","CB Helix","A Helix"]
    region_colors = jcp_fig_util.regions_and_colors()
    regions_nm = [[x,l,c] for l,(x,c) in zip(region_labels,region_colors)]
    colors_regions = [regions_nm[-1]]                        
    # slice the regions 
    regions = [FEC_Util.slice_by_separation(example_plot,*reg) 
               for reg in zoom_regions_nm]
    ylim_pN_zoom = [50,120]
    # # make the plot 
    fig = PlotUtilities.figure((7,4))
    # create the 'top' gridspec
    top_spec = gridspec.GridSpec(2,3)
    # create separate axes for the image and FECs 
    image_spec = \
        gridspec.GridSpecFromSubplotSpec(1,1,subplot_spec=top_spec[0,0])
    data_spec = \
        gridspec.GridSpecFromSubplotSpec(1,2,subplot_spec=top_spec[0,1:])
    # # plot the image 
    ax = plt.subplot(image_spec[:])
    plt.imshow(plt.imread("../Data/sample_cartoon.png"),aspect='auto')
    ax.axis('off')
    # # plot the example fec and zoomed regions
    #
    # 'full' example 
    ax_example = plt.subplot(data_spec[:,0])
    alpha_data = 0.4
    color_data = 'g'
    dict_plot = dict(n_filter_points=2000,
                     style_data=dict(color=color_data,alpha=alpha_data,
                                     linewidth=0.5,linestyle='-'))
    x_full_plot = x_func(example_plot)                                     
    FEC_Plot._fec_base_plot(x_full_plot,y_func(example_plot),
                            **dict_plot)
    PlotUtilities.tom_ticks(ax=ax_example,num_major=5,change_x=False)    
    PlotUtilities.tom_ticks(ax=ax_example,num_major=4,change_y=False)                              
    for i,(r,color) in enumerate(zip(regions,colors_regions)):
        # put a box around the region 
        x,y = x_func(r),y_func(r)
        Annotations.add_rectangle(ax_example,[min(x),max(x)],[min(y),max(y)])
    plt.ylim(ylim_pN)
    plt.xlim(xlim_nm)
    jcp_fig_util.add_helical_boxes(ax=ax_example)
    # plot the adhesion regions
    plt.axvspan(min(x_full_plot),adhesion_max_nm,color='0.85',
                linewidth=0)
    PlotUtilities.lazyLabel("Extension","Force","")   
    PlotUtilities.x_label_on_top(ax_example)
    PlotUtilities.no_x_label(ax_example)
    PlotUtilities.no_y_label(ax_example)
    x_kwargs = dict(unit_kwargs=dict(fmt="{:.0f}"),width=15,unit="nm")
    y_kwargs = dict(unit_kwargs=dict(fmt="{:.0f}"),
                    height=40,unit="pN")
    Scalebar.crossed_x_and_y_relative(offset_x=0.55,offset_y=0.58,
                                      x_kwargs=x_kwargs,
                                      y_kwargs=y_kwargs,
                                      ax=ax_example)    
    # add in the velocity annotation (in nm/s, from m/s)
    velocity_annotate(ax=ax_example,v=vel_m_per_s*1e9)
    # # plot all the zoomed regions 
    offsets_x = [0.8]
    offsets_y = [0.67]
    heights_pN = [10]
    widths_s = [0.001]
    for i,(r,color) in enumerate(zip(regions,colors_regions)):
        ax_tmp = plt.subplot(data_spec[-1])
        dict_tmp = dict(**dict_plot)
        dict_tmp['style_data']['color'] = color[-1]
        time = r.Time
#.........这里部分代码省略.........
开发者ID:prheenan,项目名称:Research,代码行数:103,代码来源:main_diagram.py

示例14: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def run():
    """
    """
    landscape = CheckpointUtilities.lazy_load("./example_landscape.pkl")
    # make the landscape relative
    landscape.offset_energy(min(landscape.G_0))
    landscape.offset_extension(min(landscape.q))
    # get the landscape, A_z in kT. Note that we convert z->q, so it is
    # really A(q=z-A'/k)
    A_q = landscape.A_z
    A_q_kT = (A_q * landscape.beta)
    # numerically differentiate
    to_y = lambda x: x * 1e12
    landscape_deriv_plot = to_y(np.gradient(A_q)/np.gradient(landscape.q))
    # compare with the A' term. XXX should just save it...
    weighted_deriv_plot = to_y(landscape.A_z_dot)
    x_plot = landscape.q * 1e9
    label_A_q_dot = r"$\dot{A}$"
    label_finite = label_A_q_dot + r" from finite difference"
    label_work = r"{:s}$ =<<F>>$".format(label_A_q_dot)
    kw_weighted = dict(color='m',label=label_work)
    fig = PlotUtilities.figure((3.5,5))
    # # plot just A(q)
    ax_A_q = plt.subplot(3,1,1)
    plt.plot(x_plot,A_q_kT,color='c',label="$A$")
    PlotUtilities.lazyLabel("","Helmholtz A ($k_\mathrm{b}T$)","",
                            loc=(0.5,0.8),frameon=True)
    PlotUtilities.set_legend_kwargs(ax=ax_A_q,background_color='w',linewidth=0)
    PlotUtilities.no_x_label(ax_A_q)
    x0 = 14.5
    dx = 0.05
    xlim = [x0,x0+dx]
    # plot the data red where we will zoom in 
    where_region = np.where( (x_plot >= xlim[0]) & 
                             (x_plot <= xlim[1]))
    zoom_x = x_plot[where_region]
    zoom_y = A_q_kT[where_region]
    ylim = [min(zoom_y),max(zoom_y)]
    dy = ylim[1]-ylim[0]
    # add in some extra space for the scalebar 
    ylim_fudge = 0.7
    ylim = [ylim[0],ylim[1] + (ylim_fudge * dy)]
    lazy_common = dict(title_kwargs=dict(loc='left'))
    plt.axvspan(*xlim,color='r',alpha=0.3,edgecolor="None")
    plt.plot(zoom_x,zoom_y,color='r')
    # plot a zoomed in axis, to clarify why it probably goes wrong 
    axins = zoomed_inset_axes(ax_A_q, zoom=250, loc=4,borderpad=1)
    axins.plot(x_plot, A_q_kT,linewidth=0.1,color='r')
    axins.set_xlim(*xlim) # apply the x-limits
    axins.set_ylim(*ylim) # apply the y-limits
    PlotUtilities.no_x_anything(axins)
    PlotUtilities.no_y_anything(axins)
    # add in a scale bar for the inset
    unit_kw_x = dict(fmt="{:.0f}",value_function=lambda x: x*1000)
    common = dict(line_kwargs=dict(linewidth=1.0,color='k'))
    # round to ~10s of pm
    x_width = np.around(dx/3,2)
    y_width = np.around(dy/3,1)
    x_kw = dict(width=x_width,unit="pm",unit_kwargs=unit_kw_x,
                fudge_text_pct=dict(x=0.2,y=-0.2),**common)
    y_kw = dict(height=y_width,unit=r"$k_\mathrm{b}T$",
                unit_kwargs=dict(fmt="{:.1f}"),**common)
    Scalebar.crossed_x_and_y_relative(ax=axins,
                                      offset_x=0.45,
                                      offset_y=0.7,
                                      x_kwargs=x_kw,
                                      y_kwargs=y_kw)
    # # plot A_z_dot 
    ax_deriv_both = plt.subplot(3,1,2)
    # divide by 1000 to get uN
    plt.plot(x_plot,landscape_deriv_plot/1e6,color='k',
             label=label_finite)
    plt.plot(x_plot,weighted_deriv_plot/1e6,**kw_weighted)
    PlotUtilities.lazyLabel("",
                            "$\dot{A}(q)$ ($\mathrm{\mu}$N)",
                            "$\Downarrow$ Determine derivative (both methods)",
                            **lazy_common)
    PlotUtilities.no_x_label(ax_deriv_both)
    # # plot A_z_dot, but just the weighted method (ie: not super wacky)
    ax_deriv_weighted = plt.subplot(3,1,3)
    plt.plot(x_plot,weighted_deriv_plot,linewidth=1,**kw_weighted)
    title_last = "$\Downarrow$ Work-weighted method is reasonable "
    PlotUtilities.lazyLabel("Extension (nm)","$\dot{A}(q)$ (pN)",
                            title_last,**lazy_common)
    PlotUtilities.savefig(fig,"./finite_differences.png",
                          subplots_adjust=dict(hspace=0.2))
开发者ID:prheenan,项目名称:Research,代码行数:88,代码来源:main_finite_difference.py

示例15: plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_x_label [as 别名]
def plot(interp,split_fec,f,xlim_rel_start,xlim_rel_delta,
         when_to_break=_dont_break):
    # calculate all the things we will neeed
    time_sep_force = f(split_fec)
    x_plot,y_plot = Plotting.plot_format(time_sep_force)
    n_filter_points = 1000
    x_raw = time_sep_force.Time
    y_raw = time_sep_force.Force
    interp_raw = interp(x_raw)
    diff_raw = y_raw - interp_raw
    stdev = Analysis.local_stdev(diff_raw,n=split_fec.tau_num_points)
    xlims_rel = [ [i,i+xlim_rel_delta] for i in  xlim_rel_start]
    # convert to plotting units
    n = x_plot.size
    slices_abs = [ slice(int(i*n),int(f*n),1) for i,f in xlims_rel ]
    x_plot_slices = [ x_plot[s] for s in slices_abs ]
    diff_raw_slices = [diff_raw[s] for s in slices_abs]
    max_raw_diff_slices = [max(d) for d in diff_raw_slices]
    min_raw_diff_slices = [min(d) for d in diff_raw_slices]
    range_raw_diff_slices = np.array([min(min_raw_diff_slices),
                                      max(max_raw_diff_slices)])
    range_raw_diff = np.array([min(diff_raw),max(diff_raw)])
    range_plot_diff = f_plot_y(range_raw_diff*1.1)
    xlim_abs = [ [min(x),max(x)] for x in x_plot_slices]
    n_plots = len(x_plot_slices)
    # set up the plot styling
    style_approach = dict(color='b')
    style_raw = dict(alpha=0.3,**style_approach)
    style_interp = dict(linewidth=3,**style_approach)
    colors = ['r','m','k']
    style_regions = [] 
    for c in colors:
        style_tmp = dict(**style_raw)
        style_tmp['color'] = c
        style_regions.append(style_tmp)
    gs = gridspec.GridSpec(3,2*n_plots)
    plt.subplot(gs[0,:])
    plot_force(x_plot,y_plot,interp_raw,style_raw,style_interp)
    # highlight all the residual regions in their colors
    for style_tmp,slice_tmp in zip(style_regions,slices_abs):
        if (when_to_break == _break_after_interp):
            break
        style_interp_tmp = dict(**style_tmp)
        style_interp_tmp['alpha'] = 1
        plt.plot(x_plot[slice_tmp],y_plot[slice_tmp],**style_tmp)
        plt.plot(x_plot[slice_tmp],f_plot_y(interp_raw[slice_tmp]),linewidth=3,
                 **style_interp_tmp)
        if (when_to_break == _break_after_first_zoom):
            break
    ax_diff = plt.subplot(gs[1,:])
    plot_residual(x_plot,diff_raw,style_raw)
    # highlight all the residual regions in their colors
    for style_tmp,slice_tmp in zip(style_regions,slices_abs):
        if (when_to_break == _break_after_interp):
            break
        plt.plot(x_plot[slice_tmp],f_plot_y(diff_raw)[slice_tmp],**style_tmp)
        if (when_to_break == _break_after_first_zoom):
            break
    plt.ylim(range_plot_diff)
    tick_kwargs = dict(right=False)
    # plot all the subregions
    for i in range(n_plots):
        xlim_tmp = xlim_abs[i]
        ylim_tmp = range_plot_diff
        """
        plot the raw data
        """
        offset_idx = 2*i
        ax_tmp = plt.subplot(gs[-1,offset_idx])
        diff_tmp = diff_raw_slices[i]
        # convert everything to plotting units
        diff_plot_tmp =f_plot_y(diff_tmp) 
        x_plot_tmp = x_plot_slices[i]
        style_tmp = style_regions[i]
        if (when_to_break != _break_after_interp):
            plt.plot(x_plot_tmp,diff_plot_tmp,**style_tmp)
        PlotUtilities.no_x_anything()
        if (i != 0):
            PlotUtilities.no_y_label()
            PlotUtilities.tickAxisFont(**tick_kwargs)
        else:
            PlotUtilities.lazyLabel("","Force (pN)","",tick_kwargs=tick_kwargs)
        plt.xlim(xlim_tmp)
        plt.ylim(ylim_tmp)
        if (when_to_break != _break_after_interp):
            PlotUtilities.zoom_effect01(ax_diff, ax_tmp, *xlim_tmp)
        if (i == 0 and (when_to_break != _break_after_interp)):
            # make a scale bar for this plot
            time = 20e-3
            string = "{:d} ms".format(int(time*1000))
            PlotUtilities.scale_bar_x(np.mean(xlim_tmp),0.8*max(ylim_tmp),
                                      s=string,width=time,fontsize=15)
        """
        plot the histogram
        """
        ax_hist = plt.subplot(gs[-1,offset_idx+1])
        if (i == 0):
            PlotUtilities.xlabel("Count")
        else:
            PlotUtilities.no_x_label()
#.........这里部分代码省略.........
开发者ID:prheenan,项目名称:Research,代码行数:103,代码来源:main_figure_noise.py


注:本文中的GeneralUtil.python.PlotUtilities.no_x_label方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。