本文整理汇总了Python中GeneralUtil.python.PlotUtilities.tom_ticks方法的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities.tom_ticks方法的具体用法?Python PlotUtilities.tom_ticks怎么用?Python PlotUtilities.tom_ticks使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GeneralUtil.python.PlotUtilities
的用法示例。
在下文中一共展示了PlotUtilities.tom_ticks方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: helical_gallery_plot
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import tom_ticks [as 别名]
def helical_gallery_plot(helical_areas,helical_data,helical_kwargs):
axs,first_axs,second_axs = [],[],[]
offset_y = 0.2
kw_scalebars = [dict(offset_x=0.35,offset_y=offset_y),
dict(offset_x=0.35,offset_y=offset_y),
dict(offset_x=0.35,offset_y=offset_y)]
xlims = [ [None,None],[None,None],[None,15] ]
arrow_x = [0.60,0.62,0.55]
arrow_y = [0.58,0.60,0.45]
for i,a in enumerate(helical_areas):
data = helical_data[i]
kw_tmp = helical_kwargs[i]
data_landscape = landscape_data(data.landscape)
# # plot the energy landscape...
ax_tmp = plt.subplot(1,len(helical_areas),(i+1))
axs.append(ax_tmp)
kw_landscape = kw_tmp['kw_landscape']
color = kw_landscape['color']
ax_1, ax_2 = plot_landscape(data_landscape,xlim=xlims[i],
kw_landscape=kw_landscape,
plot_derivative=True)
first_axs.append(ax_1)
second_axs.append(ax_2)
PlotUtilities.tom_ticks(ax=ax_2,num_major=5,change_x=False)
last_idx = len(helical_areas)-1
ax_1.annotate("",xytext=(arrow_x[i],arrow_y[i]),textcoords='axes fraction',
xy=(arrow_x[i]+0.2,arrow_y[i]),xycoords='axes fraction',
arrowprops=dict(facecolor=color,alpha=0.7,
edgecolor="None",width=4,headwidth=10,
headlength=5))
if (i > 0):
PlotUtilities.ylabel("")
PlotUtilities.xlabel("")
if (i != last_idx):
ax_2.set_ylabel("")
PlotUtilities.no_x_label(ax_1)
PlotUtilities.no_x_label(ax_2)
PlotUtilities.title(a.plot_title,color=color)
normalize_and_set_zeros(first_axs,second_axs)
# after normalization, add in the scale bars
for i,(ax_1,ax_2) in enumerate(zip(first_axs,second_axs)):
Scalebar.x_scale_bar_and_ticks_relative(unit="nm",width=5,ax=ax_2,
**kw_scalebars[i])
PlotUtilities.no_x_label(ax_2)
示例2: make_image_plot
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import tom_ticks [as 别名]
def make_image_plot(im,imshow_kwargs=dict(cmap=plt.cm.afmhot),pct=50):
"""
Given an image object, makes a sensible plot
Args:
im: PxpLoader.SurfaceImage object
imshow_kwargs: passed directly to plt.imshow
pct: where to put 'zero' default to median (probably the surface
Returns:
output of im_show
"""
# offset the data
im_height = im.height_nm()
min_offset = np.percentile(im_height,pct)
im_height -= min_offset
range_microns = im.range_meters * 1e6
to_ret = plt.imshow(im_height.T,extent=[0,range_microns,0,range_microns],
interpolation='bicubic',**imshow_kwargs)
PlotUtilities.tom_ticks()
micron_str = PlotUtilities.upright_mu("m")
PlotUtilities.lazyLabel(micron_str,micron_str,"",
tick_kwargs=dict(direction='out'))
return to_ret
示例3: tick_style_log
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import tom_ticks [as 别名]
def tick_style_log(**kwargs):
PlotUtilities.tom_ticks(plt.gca(),num_major=3,**kwargs)
示例4: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import tom_ticks [as 别名]
#.........这里部分代码省略.........
ax_final_prob = plt.subplot(gs[3,:])
plt.plot(time_plot,to_prob_plot(info_final.cdf),
**probability_kwargs)
title_consistent = (arrow + "Supress small force change events")
PlotUtilities.lazyLabel("",probability_label_post,title_consistent,**kw)
PlotUtilities.no_x_label(ax_final_prob)
plt.ylim(ylim_prob)
plt.xlim(xlim_time)
Scalebar.x_scale_bar_and_ticks_relative(ax=ax_final_prob,**prob_scale_dict)
tick_style()
# # plot the final event locations
ax_final = plt.subplot(gs[4,:])
plt.plot(time_plot,force_plot,**raw_force_kwargs)
plt.plot(time_plot,force_interp_plot,**interp_force_kwargs)
PlotUtilities.no_x_label(ax_final)
title_final = (arrow + " Extract significant events")
event_starts = [e.start for e in info_final.event_slices_raw]
Plotting.plot_arrows_above_events(event_starts,plot_x=time_plot,
plot_y=force_plot,fudge_y=40,
label=None)
PlotUtilities.lazyLabel("",force_label,title_final,
loc = "upper center",**kw)
plt.ylim(ylim_force_pN)
plt.xlim(xlim_time)
Scalebar.x_scale_bar_and_ticks_relative(ax=ax_final,**fec_scale_dict)
tick_style()
ylim_first_event = [-5,30]
first_event_window_large = 0.045
fraction_increase= 5
color_first = 'm'
# get the event index, window pct to use, where to show a 'zoom', and the
# y limits (if none, just all of it)
event_idx_fudge_and_kw = \
[ [0 ,first_event_window_large ,True,ylim_first_event,color_first],
[0 ,first_event_window_large/fraction_increase,False,
ylim_first_event,color_first],
[-1,4e-3,True,[-50,None],'r']]
widths_seconds = 1e-3 * np.array([50,10,5])
for i,(event_id,fudge,zoom_bool,ylim,c) in \
enumerate(event_idx_fudge_and_kw):
# get how the interpolated plot should be
interp_force_kwargs_tmp = dict(**interp_force_kwargs)
interp_force_kwargs_tmp['color'] = c
interp_force_kwargs_tmp['linewidth'] = 1.25
# determine the slice we want to use
event_location = info_final.event_idx[event_id]
event_bounding_slice = slice_window_around(event_location,
time_plot,fraction=fudge)
time_first_event_plot = time_plot[event_bounding_slice]
time_slice = time_first_event_plot
# # plot the interpolated on the *full plot* before we zoom in (so the
# # colors match)
plt.subplot(gs[-2,:])
plt.plot(time_slice,force_interp_plot[event_bounding_slice],
**interp_force_kwargs_tmp)
plt.ylim(ylim_force_pN)
# # next, plot the zoomed version
in_ax = plt.subplot(gs[-1,i])
in_ax.plot(time_slice,force_plot[event_bounding_slice],
**raw_force_kwargs)
in_ax.plot(time_slice,force_interp_plot[event_bounding_slice],
**interp_force_kwargs_tmp)
PlotUtilities.no_x_anything(ax=in_ax)
# removing y label on all of them..
if (i == 0):
ylabel = force_label
else:
ylabel = ""
# determine if we need to add in 'guidelines' for zooming
if (zoom_bool):
PlotUtilities.zoom_effect01(ax_final,in_ax,*in_ax.get_xlim(),
color=c)
PlotUtilities.lazyLabel("Time (s)",ylabel,"",**kw)
else:
# this is a 'second' zoom in...'
PlotUtilities.no_y_label(in_ax)
ylabel = ("{:d}x\n".format(fraction_increase)) + \
r"$\rightarrow$"
PlotUtilities.lazyLabel("Time (s)",ylabel,"",**kw)
PlotUtilities.ylabel(ylabel,rotation=0,labelpad=5)
# plot an arrow over the (single) event
Plotting.plot_arrows_above_events([event_location],plot_x=time_plot,
plot_y=force_plot,fudge_y=7,
label=None,markersize=150)
plt.ylim(ylim)
common = dict(unit="ms",
unit_kwargs=dict(value_function = lambda x: x*1e3))
width = widths_seconds[i]
Scalebar.x_scale_bar_and_ticks_relative(offset_y=0.1,offset_x=0.5,
width=width,ax=in_ax,
**common)
PlotUtilities.tom_ticks(ax=in_ax,num_major=2,change_x=False)
loc_major = [-0.15,1.2]
loc_minor = [-0.15,1.15]
locs = [loc_major for _ in range(5)] + \
[loc_minor for _ in range(3)]
PlotUtilities.label_tom(fig,loc=locs)
subplots_adjust=dict(hspace=0.48,wspace=0.35)
PlotUtilities.save_png_and_svg(fig,"flowchart",
subplots_adjust=subplots_adjust)
示例5: tick_style
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import tom_ticks [as 别名]
def tick_style(num_major=3):
ax = plt.gca()
PlotUtilities.tom_ticks(ax=ax,num_major=num_major,change_x=False)
示例6: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import tom_ticks [as 别名]
def run():
"""
<Description>q
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
in_dir = None
flickering_dir = "../Data/fec/"
# XXX use the flickering dir for stuff
cache_dir = flickering_dir
GenUtilities.ensureDirExists(flickering_dir)
force_read_data = False
raw_data = IoUtilHao.read_and_cache_data_hao(flickering_dir,
force=force_read_data,
cache_directory=flickering_dir,
limit=3)
example = raw_data[0]
example_plot = copy.deepcopy(example)
# fix the manual offset
example_plot.LowResData.force -= 7.1
plot_examples = [example_plot]
vel_m_per_s = example_plot.Velocity
x_func = lambda y: y.Separation
y_func = lambda y: y.Force
ylim_pN = [-20,155]
xlim_nm = [5,75]
zoom_regions_nm = [ [61.5,63.6]]
adhesion_max_nm = 19
region_labels = ["ED Helix","CB Helix","A Helix"]
region_colors = jcp_fig_util.regions_and_colors()
regions_nm = [[x,l,c] for l,(x,c) in zip(region_labels,region_colors)]
colors_regions = [regions_nm[-1]]
# slice the regions
regions = [FEC_Util.slice_by_separation(example_plot,*reg)
for reg in zoom_regions_nm]
ylim_pN_zoom = [50,120]
# # make the plot
fig = PlotUtilities.figure((7,4))
# create the 'top' gridspec
top_spec = gridspec.GridSpec(2,3)
# create separate axes for the image and FECs
image_spec = \
gridspec.GridSpecFromSubplotSpec(1,1,subplot_spec=top_spec[0,0])
data_spec = \
gridspec.GridSpecFromSubplotSpec(1,2,subplot_spec=top_spec[0,1:])
# # plot the image
ax = plt.subplot(image_spec[:])
plt.imshow(plt.imread("../Data/sample_cartoon.png"),aspect='auto')
ax.axis('off')
# # plot the example fec and zoomed regions
#
# 'full' example
ax_example = plt.subplot(data_spec[:,0])
alpha_data = 0.4
color_data = 'g'
dict_plot = dict(n_filter_points=2000,
style_data=dict(color=color_data,alpha=alpha_data,
linewidth=0.5,linestyle='-'))
x_full_plot = x_func(example_plot)
FEC_Plot._fec_base_plot(x_full_plot,y_func(example_plot),
**dict_plot)
PlotUtilities.tom_ticks(ax=ax_example,num_major=5,change_x=False)
PlotUtilities.tom_ticks(ax=ax_example,num_major=4,change_y=False)
for i,(r,color) in enumerate(zip(regions,colors_regions)):
# put a box around the region
x,y = x_func(r),y_func(r)
Annotations.add_rectangle(ax_example,[min(x),max(x)],[min(y),max(y)])
plt.ylim(ylim_pN)
plt.xlim(xlim_nm)
jcp_fig_util.add_helical_boxes(ax=ax_example)
# plot the adhesion regions
plt.axvspan(min(x_full_plot),adhesion_max_nm,color='0.85',
linewidth=0)
PlotUtilities.lazyLabel("Extension","Force","")
PlotUtilities.x_label_on_top(ax_example)
PlotUtilities.no_x_label(ax_example)
PlotUtilities.no_y_label(ax_example)
x_kwargs = dict(unit_kwargs=dict(fmt="{:.0f}"),width=15,unit="nm")
y_kwargs = dict(unit_kwargs=dict(fmt="{:.0f}"),
height=40,unit="pN")
Scalebar.crossed_x_and_y_relative(offset_x=0.55,offset_y=0.58,
x_kwargs=x_kwargs,
y_kwargs=y_kwargs,
ax=ax_example)
# add in the velocity annotation (in nm/s, from m/s)
velocity_annotate(ax=ax_example,v=vel_m_per_s*1e9)
# # plot all the zoomed regions
offsets_x = [0.8]
offsets_y = [0.67]
heights_pN = [10]
widths_s = [0.001]
for i,(r,color) in enumerate(zip(regions,colors_regions)):
ax_tmp = plt.subplot(data_spec[-1])
dict_tmp = dict(**dict_plot)
dict_tmp['style_data']['color'] = color[-1]
time = r.Time
#.........这里部分代码省略.........