本文整理汇总了C++中UPrimitiveComponent::SetPhysicsLinearVelocity方法的典型用法代码示例。如果您正苦于以下问题:C++ UPrimitiveComponent::SetPhysicsLinearVelocity方法的具体用法?C++ UPrimitiveComponent::SetPhysicsLinearVelocity怎么用?C++ UPrimitiveComponent::SetPhysicsLinearVelocity使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类UPrimitiveComponent
的用法示例。
在下文中一共展示了UPrimitiveComponent::SetPhysicsLinearVelocity方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: UpdateBones
void ALeapMotionHandActor::UpdateBones(float DeltaSeconds)
{
if (BoneActors.Num() == 0) { return; }
float CombinedScale = GetCombinedScale();
FLeapMotionDevice* Device = FLeapMotionControllerPlugin::GetLeapDeviceSafe();
if (Device && Device->IsConnected())
{
int BoneArrayIndex = 0;
for (ELeapBone LeapBone = bShowArm ? ELeapBone::Forearm : ELeapBone::Palm; LeapBone <= ELeapBone::Finger4Tip; ((int8&)LeapBone)++)
{
FVector TargetPosition;
FRotator TargetOrientation;
bool Success = Device->GetBonePostionAndOrientation(HandId, LeapBone, TargetPosition, TargetOrientation);
if (Success)
{
// Offset target position & rotation by the SpawnReference actor's transform
FQuat RefQuat = GetRootComponent()->GetComponentRotation().Quaternion();
TargetPosition = RefQuat * TargetPosition * CombinedScale + GetRootComponent()->GetComponentLocation();
TargetOrientation = (RefQuat * TargetOrientation.Quaternion()).Rotator();
// Get current position & rotation
ALeapMotionBoneActor* BoneActor = BoneActors[BoneArrayIndex++];
UPrimitiveComponent* PrimitiveComponent = Cast<UPrimitiveComponent>(BoneActor->GetRootComponent());
if (PrimitiveComponent && PrimitiveComponent->IsSimulatingPhysics())
{
FVector CurrentPositon = PrimitiveComponent->GetComponentLocation();
FRotator CurrentRotation = PrimitiveComponent->GetComponentRotation();
// Compute linear velocity
FVector LinearVelocity = (TargetPosition - CurrentPositon) / DeltaSeconds;
// Compute angular velocity
FVector Axis;
float Angle;
ConvertDeltaRotationsToAxisAngle(CurrentRotation, TargetOrientation, Axis, Angle);
if (Angle > PI) { Angle -= 2 * PI; }
FVector AngularVelcity = Axis * (Angle / DeltaSeconds);
// Apply velocities
PrimitiveComponent->SetPhysicsLinearVelocity(LinearVelocity);
PrimitiveComponent->SetAllPhysicsAngularVelocity(AngularVelcity * 180.0f / PI);
}
}
}
}
}
示例2: KickToLocation
/** Kicks this ball to a location */
void AMagicBattleSoccerBall::KickToLocation(const FVector& Location, float AngleInDegrees)
{
if (nullptr == Possessor)
{
// Safety check. The possessor must be valid.
}
else
{
// Reset the possessor
SetPossessor(nullptr);
// Calculate the angle required to hit the coordinate (x,y) on the plane containing
// the origin and ground point. The x coordinate is the distance from the ball
// to where the user clicked, and the y coordinate should be zero.
// http://en.wikipedia.org/wiki/Trajectory_of_a_projectile
FVector Origin = GetActorLocation();
float x = FVector::Dist(Location, Origin);
float y = 0.f;
float g = -980.f; // Standard gravity
float r = AngleInDegrees * 3.14159f / 180.f;
float p = std::tan(r);
float v = std::sqrt((p*p + 1.f)*(g*x*x) / (2.f * (y - x*p)));
float forceMag = v;
FVector forward = (Location - Origin);
forward.Z = 0; // We only support kicking to locations that are on the ball's Z plane
forward.Normalize();
FVector cross = FVector::CrossProduct(forward, FVector::UpVector);
FVector kick = forward * FMath::Cos(r) * forceMag;
kick.Z = FMath::Sin(r) * forceMag;
UPrimitiveComponent *Root = Cast<UPrimitiveComponent>(GetRootComponent());
Root->SetPhysicsLinearVelocity(kick);
Root->SetPhysicsAngularVelocity(cross * forceMag * -4.f);
}
}
示例3: TickComponent
//.........这里部分代码省略.........
//BasePrimComp->AddForceAtLocation(FVector(DampingForce.X, DampingForce.Y, DampingForce.Z + BuoyancyForceZ), worldBoneLoc, BoneNames[Itr]);
}
//Apply fluid damping & clamp velocity
if (isUnderwater)
{
BI->SetLinearVelocity(-BI->GetUnrealWorldVelocity() * (FluidLinearDamping / 10), true);
BI->SetAngularVelocity(-BI->GetUnrealWorldAngularVelocity() * (FluidAngularDamping / 10), true);
//Clamp the velocity to MaxUnderwaterVelocity
if (ClampMaxVelocity && BI->GetUnrealWorldVelocity().Size() > MaxUnderwaterVelocity)
{
FVector Velocity = BI->GetUnrealWorldVelocity().GetSafeNormal() * MaxUnderwaterVelocity;
BI->SetLinearVelocity(Velocity, false);
}
}
if (DrawDebugPoints)
{
FColor DebugColor = FLinearColor(0.8, 0.7, 0.2, 0.8).ToRGBE();
if (isUnderwater) { DebugColor = FLinearColor(0, 0.2, 0.7, 0.8).ToRGBE(); } //Blue color underwater, yellow out of watter
DrawDebugSphere(World, worldBoneLoc, BoneTestRadius, 8, DebugColor);
}
}
}
return;
}
//--------------------------------------------------------
float TotalPoints = TestPoints.Num();
if (TotalPoints < 1) return;
int PointsUnderWater = 0;
for (int pointIndex = 0; pointIndex < TotalPoints; pointIndex++)
{
if (!TestPoints.IsValidIndex(pointIndex)) return; //Array size changed during runtime
bool isUnderwater = false;
FVector testPoint = TestPoints[pointIndex];
FVector worldTestPoint = BasePrimComp->GetComponentTransform().TransformPosition(testPoint);
FVector waveHeight = OceanManager->GetWaveHeightValue(worldTestPoint, World, !EnableWaveForces, TwoGerstnerIterations);
//Direction of radius (test radius is actually a Z offset, should probably rename it!). Just in case we need an upside down world.
float SignedRadius = FMath::Sign(BasePrimComp->GetPhysicsVolume()->GetGravityZ()) * TestPointRadius;
//If test point radius is below water surface, add buoyancy force.
if (waveHeight.Z > (worldTestPoint.Z + SignedRadius)
&& BasePrimComp->IsGravityEnabled()) //Buoyancy doesn't exist without gravity
{
PointsUnderWater++;
isUnderwater = true;
float DepthMultiplier = (waveHeight.Z - (worldTestPoint.Z + SignedRadius)) / (TestPointRadius * 2);
DepthMultiplier = FMath::Clamp(DepthMultiplier, 0.f, 1.f);
//If we have a point density override, use the overridden value instead of MeshDensity
float PointDensity = PointDensityOverride.IsValidIndex(pointIndex) ? PointDensityOverride[pointIndex] : MeshDensity;
/**
* --------
* Buoyancy force formula: (Volume(Mass / Density) * Fluid Density * -Gravity) / Total Points * Depth Multiplier
* --------
*/
float BuoyancyForceZ = BasePrimComp->GetMass() / PointDensity * FluidDensity * -Gravity / TotalPoints * DepthMultiplier;
//Experimental velocity damping using VelocityAtPoint.
FVector DampingForce = -GetUnrealVelocityAtPoint(BasePrimComp, worldTestPoint) * VelocityDamper * BasePrimComp->GetMass() * DepthMultiplier;
//Experimental xy wave force
if (EnableWaveForces)
{
DampingForce += BasePrimComp->GetMass() * FVector2D(waveHeight.X, waveHeight.Y).Size() * FVector(OceanManager->GlobalWaveDirection.X, OceanManager->GlobalWaveDirection.Y, 0) * WaveForceMultiplier / TotalPoints;
//float waveVelocity = FMath::Clamp(GetUnrealVelocityAtPoint(BasePrimComp, worldTestPoint).Z, -20.f, 150.f) * (1 - DepthMultiplier);
//DampingForce += OceanManager->GlobalWaveDirection * BasePrimComp->GetMass() * waveVelocity * WaveForceMultiplier / TotalPoints;
}
//Add force for this test point
BasePrimComp->AddForceAtLocation(FVector(DampingForce.X, DampingForce.Y, DampingForce.Z + BuoyancyForceZ), worldTestPoint);
}
if (DrawDebugPoints)
{
FColor DebugColor = FLinearColor(0.8, 0.7, 0.2, 0.8).ToRGBE();
if (isUnderwater) { DebugColor = FLinearColor(0, 0.2, 0.7, 0.8).ToRGBE(); } //Blue color underwater, yellow out of watter
DrawDebugSphere(World, worldTestPoint, TestPointRadius, 8, DebugColor);
}
}
//Clamp the velocity to MaxUnderwaterVelocity if there is any point underwater
if (ClampMaxVelocity && PointsUnderWater > 0
&& BasePrimComp->GetPhysicsLinearVelocity().Size() > MaxUnderwaterVelocity)
{
FVector Velocity = BasePrimComp->GetPhysicsLinearVelocity().GetSafeNormal() * MaxUnderwaterVelocity;
BasePrimComp->SetPhysicsLinearVelocity(Velocity);
}
//Update damping based on number of underwater test points
BasePrimComp->SetLinearDamping(_baseLinearDamping + FluidLinearDamping / TotalPoints * PointsUnderWater);
BasePrimComp->SetAngularDamping(_baseAngularDamping + FluidAngularDamping / TotalPoints * PointsUnderWater);
}
示例4: LoadSpacecraft
AFlareSpacecraft* UFlareSector::LoadSpacecraft(UFlareSimulatedSpacecraft* ParentSpacecraft)
{
AFlareSpacecraft* Spacecraft = NULL;
FLOGV("UFlareSector::LoadSpacecraft : Start loading ('%s')", *ParentSpacecraft->GetImmatriculation().ToString());
// Spawn parameters
FActorSpawnParameters Params;
Params.bNoFail = true;
Params.SpawnCollisionHandlingOverride = ESpawnActorCollisionHandlingMethod::AdjustIfPossibleButAlwaysSpawn;
// Create and configure the ship
Spacecraft = GetGame()->GetWorld()->SpawnActor<AFlareSpacecraft>(ParentSpacecraft->GetDescription()->Template->GeneratedClass, ParentSpacecraft->GetData().Location, ParentSpacecraft->GetData().Rotation, Params);
if (Spacecraft && !Spacecraft->IsPendingKillPending())
{
Spacecraft->Load(ParentSpacecraft);
UPrimitiveComponent* RootComponent = Cast<UPrimitiveComponent>(Spacecraft->GetRootComponent());
if (Spacecraft->IsStation())
{
SectorStations.Add(Spacecraft);
}
else
{
SectorShips.Add(Spacecraft);
}
SectorSpacecrafts.Add(Spacecraft);
FLOGV("%s spawn mode = %d", *Spacecraft->GetImmatriculation().ToString(), ParentSpacecraft->GetData().SpawnMode+0)
switch (ParentSpacecraft->GetData().SpawnMode)
{
// Already known to be correct
case EFlareSpawnMode::Safe:
FLOGV("UFlareSector::LoadSpacecraft : Safe spawn '%s' at (%f,%f,%f)",
*ParentSpacecraft->GetImmatriculation().ToString(),
ParentSpacecraft->GetData().Location.X, ParentSpacecraft->GetData().Location.Y, ParentSpacecraft->GetData().Location.Z);
RootComponent->SetPhysicsLinearVelocity(ParentSpacecraft->GetData().LinearVelocity, false);
RootComponent->SetPhysicsAngularVelocity(ParentSpacecraft->GetData().AngularVelocity, false);
break;
// First spawn
case EFlareSpawnMode::Spawn:
PlaceSpacecraft(Spacecraft, ParentSpacecraft->GetData().Location);
{
FVector NewLocation = Spacecraft->GetActorLocation();
FLOGV("UFlareSector::LoadSpacecraft : Placing '%s' at (%f,%f,%f)",
*ParentSpacecraft->GetImmatriculation().ToString(),
NewLocation.X, NewLocation.Y, NewLocation.Z);
}
RootComponent->SetPhysicsLinearVelocity(FVector::ZeroVector, false);
RootComponent->SetPhysicsAngularVelocity(FVector::ZeroVector, false);
break;
// Incoming in sector
case EFlareSpawnMode::Travel:
{
FLOGV("UFlareSector::LoadSpacecraft : Travel '%s' at (%f, %f, %f)",
*ParentSpacecraft->GetImmatriculation().ToString(),
ParentSpacecraft->GetData().Location.X, ParentSpacecraft->GetData().Location.Y, ParentSpacecraft->GetData().Location.Z);
FVector SpawnDirection;
TArray<AFlareSpacecraft*> FriendlySpacecrafts = GetCompanySpacecrafts(Spacecraft->GetCompany());
FVector FriendlyShipLocationSum = FVector::ZeroVector;
int FriendlyShipCount = 0;
for (int SpacecraftIndex = 0 ; SpacecraftIndex < FriendlySpacecrafts.Num(); SpacecraftIndex++)
{
AFlareSpacecraft *SpacecraftCandidate = FriendlySpacecrafts[SpacecraftIndex];
if (!SpacecraftCandidate->IsStation() && SpacecraftCandidate != Spacecraft)
{
FriendlyShipLocationSum += SpacecraftCandidate->GetActorLocation();
FriendlyShipCount++;
}
}
if (FriendlyShipCount == 0)
{
FVector NotFriendlyShipLocationSum = FVector::ZeroVector;
int NotFriendlyShipCount = 0;
for (int SpacecraftIndex = 0 ; SpacecraftIndex < SectorShips.Num(); SpacecraftIndex++)
{
AFlareSpacecraft *SpacecraftCandidate = SectorShips[SpacecraftIndex];
if (SpacecraftCandidate != Spacecraft && SpacecraftCandidate->GetCompany() != Spacecraft->GetCompany())
{
NotFriendlyShipLocationSum += SpacecraftCandidate->GetActorLocation();
NotFriendlyShipCount++;
}
}
if (NotFriendlyShipCount == 0)
{
//.........这里部分代码省略.........