当前位置: 首页>>代码示例>>Python>>正文


Python Model.train_model方法代码示例

本文整理汇总了Python中model.Model.train_model方法的典型用法代码示例。如果您正苦于以下问题:Python Model.train_model方法的具体用法?Python Model.train_model怎么用?Python Model.train_model使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model.Model的用法示例。


在下文中一共展示了Model.train_model方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: keypoint_detection

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train_model [as 别名]
def keypoint_detection():
    try:
        data = sio.loadmat('data.mat')
    except:
        load.csv()
        data = sio.loadmat('data.mat')

    train_x = data['train_x']
    train_y = data['train_y']
    test_x = data['test_x']

    # data normalization
    train_x = train_x / 256.0
    train_y = (train_y - 48) / 48.0
    test_x = test_x / 256.0

    sklearn.utils.shuffle(train_x, train_y, random_state=0)

    train_x, valid_x = train_x[:-400], train_x[-400:]
    train_y, valid_y = train_y[:-400], train_y[-400:]

    model = Model(0.01, 0.9, 0.0005, 100, 10000)

    model.add_layer(layers.FullConnectedLayer(9216, 256, 1, layers.rectify))
    model.add_layer(layers.DropoutLayer(0.5))
    model.add_layer(layers.FullConnectedLayer(256, 100, 1, layers.rectify))
    model.add_layer(layers.DropoutLayer(0.5))
    model.add_layer(layers.FullConnectedLayer(100, 30))
    model.set_loss_function(layers.EuclideanLoss)

    model.build()
    print 'build model complete'
    model.train_model(train_x, train_y, valid_x, valid_y)
    model.save_test_result(test_x)
开发者ID:hqythu,项目名称:kaggle-facial-keypoints-detection,代码行数:36,代码来源:mlp.py

示例2: keypoint_detection

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train_model [as 别名]
def keypoint_detection():
    try:
        data = sio.loadmat('data.mat')
    except:
        load.csv()
        data = sio.loadmat('data.mat')

    train_x = data['train_x']
    train_y = data['train_y']
    test_x = data['test_x']

    # data normalization
    train_x = train_x / 256.0
    train_y = (train_y - 48) / 48.0
    test_x = test_x / 256.0

    sklearn.utils.shuffle(train_x, train_y, random_state=0)

    train_x, valid_x = train_x[:-400], train_x[-400:]
    train_y, valid_y = train_y[:-400], train_y[-400:]

    model = Model(0.01, 0.9, 0.0005, 100, 1000)
    model.add_layer(layers.ReshapeLayer(1, 96, 96))
    model.add_layer(layers.ConvolutionLayer((3, 3), 8, 1, 1, layers.rectify))
    model.add_layer(layers.PoolingLayer((2, 2))) # 47 * 47 * 8
    model.add_layer(layers.ConvolutionLayer((2, 2), 16, 8, 1, layers.rectify))
    model.add_layer(layers.PoolingLayer((2, 2))) # 23 * 23 * 16
    model.add_layer(layers.ConvolutionLayer((2, 2), 32, 16, 1, layers.rectify))
    model.add_layer(layers.PoolingLayer((2, 2))) # 11 * 11 * 32
    model.add_layer(layers.ConvolutionLayer((2, 2), 64, 32, 1, layers.rectify))
    model.add_layer(layers.PoolingLayer((2, 2))) # 5 * 5 * 64
    model.add_layer(layers.ConvolutionLayer((2, 2), 128, 64, 1, layers.rectify))
    model.add_layer(layers.PoolingLayer((2, 2))) # 2 * 2 * 128
    model.add_layer(layers.FullConnectedLayer(512, 512, 1, layers.rectify))
    model.add_layer(layers.DropoutLayer(0.5))
    model.add_layer(layers.FullConnectedLayer(512, 512, 1, layers.rectify))
    model.add_layer(layers.DropoutLayer(0.5))
    model.add_layer(layers.FullConnectedLayer(512, 30))
    model.set_loss_function(layers.EuclideanLoss)
    model.build()
    print 'build model complete'
    model.train_model(train_x, train_y, valid_x, valid_y)
    model.save_test_result(test_x)
开发者ID:hqythu,项目名称:kaggle-facial-keypoints-detection,代码行数:45,代码来源:cnn_large.py

示例3: open

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train_model [as 别名]
    if args.file:
        for i in args.file:
            try:
                with open(i) as fd:
                    texts.append(fd.read())
            except Exception, exc:
                print exc.strerror + ': ' + i
    # read remote files to train model
    if args.url:
        for i in args.url:
            proc = subprocess.Popen(["curl", i], stdout=subprocess.PIPE)
            (out, err) = proc.communicate()
            if err:
                print err + ": " + i
            if len(out) > 0:
                texts.append(out)

    if len(texts) == 0:
        print "Error: no train text given"
        exit()

    model = Model(args.n)
    for i in texts:
        model.train_model(i)

    # save model
    with open(args.o, "wb") as fd:
        pickle.dump(model, fd)
    pass

开发者ID:amezhenin,项目名称:driveling,代码行数:31,代码来源:trainer.py


注:本文中的model.Model.train_model方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。