当前位置: 首页>>代码示例>>Python>>正文


Python Model.run方法代码示例

本文整理汇总了Python中model.Model.run方法的典型用法代码示例。如果您正苦于以下问题:Python Model.run方法的具体用法?Python Model.run怎么用?Python Model.run使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model.Model的用法示例。


在下文中一共展示了Model.run方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import run [as 别名]
 def run(self):
     '''
     Runs through each model specified by models_to_run once with each possible
     setting in params.
     '''
     N = 0
     self.prepare_report()
     for index, clf in enumerate([self.clfs[x] for x in self.models_to_run]):
         iteration = 0
         print 'Running {}.'.format(self.models_to_run[index])
         parameter_values = self.params[self.models_to_run[index]]
         grid = ParameterGrid(parameter_values)
         while iteration < self.iterations_max and iteration < len(grid):
             print '    Running Iteration {} of {}...'.format(iteration + 1,
                   self.iterations_max)
             if len(grid) > self.iterations_max:
                 p = random.choice(list(grid))
             else:
                 p = list(grid)[iteration]
             try:
                 m = Model(clf, self.X_train, self.y_train, self.X_test,
                             self.y_test, p, N, self.models_to_run[index],
                             iteration, self.run_name, self.label,
                             self.thresholds, self.outfile)
                 m.run()
                 self.check_model_performance(m, self.comparison_threshold)
                 m.performance_to_file()
                 self.pickle_model(m)
             except IndexError as e:
                 print p
                 print N
                 print 'IndexError: {}'.format(e)
                 print traceback.format_exc()
                 continue
             except RuntimeError as e:
                 print p
                 print N
                 print 'RuntimeError: {}'.format(e)
                 print traceback.format_exc()
                 continue
             except AttributeError as e:
                 print p
                 print N
                 print 'AttributeError: {}'.format(e)
                 print traceback.format_exc()
                 continue
             except ValueError as e:
                 print p
                 print N
                 print 'Unexpected ValueError: {}'.format(e)
                 print traceback.format_exc()
                 continue
             iteration += 1
         N += 1
开发者ID:aldengolab,项目名称:ML-basics,代码行数:56,代码来源:model_loop.py

示例2: test_scalars

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import run [as 别名]
    def test_scalars(self):
        # Create 2 inputs
        X = helper.make_tensor_value_info('A', TensorProto.INT32, [])
        Y = helper.make_tensor_value_info('B', TensorProto.INT32, [])
        # Create one output
        Z = helper.make_tensor_value_info('C', TensorProto.INT32, [])
        # Create a node
        node_def = helper.make_node('Add', ['A', 'B'], ['C'])

        # Create the model
        graph_def = helper.make_graph([node_def], "scalar-model", [X, Y], [Z])
        onnx_model = helper.make_model(graph_def,
                                       producer_name='onnx-example')

        model = Model()
        model.BuildFromOnnxModel(onnx_model)
        schedule = model.OptimizeSchedule()
        schedule = schedule.replace('\n', ' ')
        expected_schedule = r'// Target: .+// MachineParams: .+// Delete this line if not using Generator Pipeline pipeline = get_pipeline\(\);.+Func C = pipeline.get_func\(2\);.+{.+}.+'
        self.assertRegex(schedule, expected_schedule)

        input1 = np.random.randint(-10, 10, size=())
        input2 = np.random.randint(-10, 10, size=())
        outputs = model.run([input1, input2])
        self.assertEqual(1, len(outputs))
        output = outputs[0]
        expected = input1 + input2
        np.testing.assert_allclose(expected, output)
开发者ID:halide,项目名称:Halide,代码行数:30,代码来源:model_test.py

示例3: test_small_model

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import run [as 别名]
    def test_small_model(self):
        # Create one input
        X = helper.make_tensor_value_info('IN', TensorProto.FLOAT, [2, 3])
        # Create one output
        Y = helper.make_tensor_value_info('OUT', TensorProto.FLOAT, [2, 3])
        # Create a node
        node_def = helper.make_node('Abs', ['IN'], ['OUT'])

        # Create the model
        graph_def = helper.make_graph([node_def], "test-model", [X], [Y])
        onnx_model = helper.make_model(graph_def,
                                       producer_name='onnx-example')

        model = Model()
        model.BuildFromOnnxModel(onnx_model)
        schedule = model.OptimizeSchedule()
        schedule = schedule.replace('\n', ' ')
        expected_schedule = r'// Target: .+// MachineParams: .+// Delete this line if not using Generator Pipeline pipeline = get_pipeline\(\);.+Func OUT = pipeline.get_func\(1\);.+{.+}.+'
        self.assertRegex(schedule, expected_schedule)

        input = np.random.rand(2, 3) - 0.5
        outputs = model.run([input])
        self.assertEqual(1, len(outputs))
        output = outputs[0]
        expected = np.abs(input)
        np.testing.assert_allclose(expected, output)
开发者ID:halide,项目名称:Halide,代码行数:28,代码来源:model_test.py

示例4: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import run [as 别名]
def main():
    # objs/emulator -verbose @Nexus4

    parser = argparse.ArgumentParser()
    parser.add_argument('--emu-path', default=os.path.abspath('../qemu/obj/emulator'),
                        help='emulator path')
    parser.add_argument('emu_args', default=['-verbose', '@Nexus4'], nargs='*',
                        help='args for the emulator. e.g: @Nexus4')
    args = parser.parse_args()

    device = Emulator(args.emu_path, *args.emu_args)
    model = Model(device)

    modem = Modem()
    model.add_component('modem_driver_read', modem)

    try:
        model.run()
    except (KeyboardInterrupt, SystemExit):
        print("got Ctrl+C (SIGINT) or exit() is called")
        model.stop()
开发者ID:android-energy,项目名称:energy,代码行数:23,代码来源:__main__.py

示例5: test_tensors_rank_zero

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import run [as 别名]
    def test_tensors_rank_zero(self):
        X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [3, 2])
        S1 = helper.make_tensor_value_info('S1', TensorProto.INT64, [])
        S2 = helper.make_tensor_value_info('S2', TensorProto.FLOAT, [])

        size_node = helper.make_node('Size', ['X'], ['S1'])

        graph_def = helper.make_graph([size_node],
            "rank_zero_test",
            [X],
            [S1, S2],
            initializer=[
                helper.make_tensor('S2', TensorProto.FLOAT, (), (3.14,))])
        onnx_model = helper.make_model(graph_def,
                                       producer_name='onnx-example')
        model = Model()
        model.BuildFromOnnxModel(onnx_model)
        input_data = np.random.rand(3, 2)
        outputs = model.run([input_data])
        self.assertEqual(6, outputs[0])
        self.assertAlmostEqual(3.14, outputs[1])
开发者ID:halide,项目名称:Halide,代码行数:23,代码来源:model_test.py

示例6: test_model_with_initializer

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import run [as 别名]
    def test_model_with_initializer(self):
        X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [3, 1])
        Z2 = helper.make_tensor_value_info('Z2', TensorProto.FLOAT, [2, 3, 6])

        expand_node_def = helper.make_node('Expand', ['X', 'Y'], ['Z1'])
        cast_node_def = helper.make_node('Scale', ['Z1'], ['Z2'])

        graph_def = helper.make_graph([expand_node_def, cast_node_def],
            "test-node",
            [X],
            [Z2],
            initializer=[
                helper.make_tensor('Y', TensorProto.INT64, (3,), (2, 1, 6))])
        onnx_model = helper.make_model(graph_def,
                                       producer_name='onnx-example')
        model = Model()
        model.BuildFromOnnxModel(onnx_model)
        input_data = np.random.rand(3, 1)
        outputs = model.run([input_data])
        expected = input_data * np.ones([2, 1, 6], dtype=np.float32)
        np.testing.assert_allclose(expected, outputs[0])
开发者ID:halide,项目名称:Halide,代码行数:23,代码来源:model_test.py

示例7: print

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import run [as 别名]
#!/usr/bin/python3.5

print("initializing Ising Model")

from model import Model
from interface import Interface

#i = Interface()
#dimension = i.askDimension()
#size = i.askSize()

size = 100
dimension = 2
populate = 'circle'
dynamic = 'none'
output = 'video'
iterate = 10

m = Model()
m.run(dimension, size, populate = populate, iterate = iterate, output = output)

print("finished")
开发者ID:RogerRussel,项目名称:IsingModel,代码行数:24,代码来源:main.py


注:本文中的model.Model.run方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。