当前位置: 首页>>代码示例>>Python>>正文


Python Model.encode_yz_representation方法代码示例

本文整理汇总了Python中model.Model.encode_yz_representation方法的典型用法代码示例。如果您正苦于以下问题:Python Model.encode_yz_representation方法的具体用法?Python Model.encode_yz_representation怎么用?Python Model.encode_yz_representation使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model.Model的用法示例。


在下文中一共展示了Model.encode_yz_representation方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_analogy

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import encode_yz_representation [as 别名]
def plot_analogy():
	dataset_train, dataset_test = chainer.datasets.get_mnist()
	images_train, labels_train = dataset_train._datasets
	images_test, labels_test = dataset_test._datasets
	dataset_indices = np.arange(0, len(images_test))
	np.random.shuffle(dataset_indices)

	model = Model()
	assert model.load("model.hdf5")

	# normalize
	images_train = (images_train - 0.5) * 2
	images_test = (images_test - 0.5) * 2

	num_analogies = 10
	pylab.gray()

	batch_indices = dataset_indices[:num_analogies]
	x_batch = images_test[batch_indices]
	y_batch = labels_test[batch_indices]
	y_onehot_batch = onehot(y_batch)

	with chainer.no_backprop_mode() and chainer.using_config("train", False):
		z_batch = model.encode_x_yz(x_batch)[1].data

		# plot original image on the left
		x_batch = (x_batch + 1.0) / 2.0
		for m in range(num_analogies):
			pylab.subplot(num_analogies, 10 + 2, m * 12 + 1)
			pylab.imshow(x_batch[m].reshape((28, 28)), interpolation="none")
			pylab.axis("off")

		all_y = np.identity(10, dtype=np.float32)
		for m in range(num_analogies):
			# copy z_batch as many as the number of classes
			fixed_z = np.repeat(z_batch[m].reshape(1, -1), 10, axis=0)
			representation = model.encode_yz_representation(all_y, fixed_z)
			gen_x = model.decode_representation_x(representation).data
			gen_x = (gen_x + 1.0) / 2.0
			# plot images generated from each label
			for n in range(10):
				pylab.subplot(num_analogies, 10 + 2, m * 12 + 3 + n)
				pylab.imshow(gen_x[n].reshape((28, 28)), interpolation="none")
				pylab.axis("off")

	fig = pylab.gcf()
	fig.set_size_inches(num_analogies, 10)
	pylab.savefig("analogy.png")
开发者ID:musyoku,项目名称:adversarial-autoencoder,代码行数:50,代码来源:visualize.py

示例2: plot_representation

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import encode_yz_representation [as 别名]
def plot_representation():
	parser = argparse.ArgumentParser()
	parser.add_argument("--model", "-m", type=str, default="model.hdf5")
	args = parser.parse_args()

	dataset_train, dataset_test = chainer.datasets.get_mnist()
	images_train, labels_train = dataset_train._datasets
	images_test, labels_test = dataset_test._datasets

	model = Model()
	assert model.load(args.model)

	# normalize
	images_train = (images_train - 0.5) * 2
	images_test = (images_test - 0.5) * 2

	with chainer.no_backprop_mode() and chainer.using_config("train", False):
		y_onehot, z = model.encode_x_yz(images_test, apply_softmax_y=True)
		representation = model.encode_yz_representation(y_onehot, z).data
	plot.scatter_labeled_z(representation, labels_test, "scatter_r.png")
开发者ID:musyoku,项目名称:adversarial-autoencoder,代码行数:22,代码来源:visualize.py

示例3: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import encode_yz_representation [as 别名]

#.........这里部分代码省略.........
		y = math.sin(rad * n) * radius
		mapped_cluster_head_2d_target[n] = (x, y)
	if using_gpu:
		mapped_cluster_head_2d_target = cuda.to_gpu(mapped_cluster_head_2d_target)

	# training loop
	training_start_time = time.time()
	for epoch in range(args.total_epochs):

		sum_loss_generator 		= 0
		sum_loss_discriminator 	= 0
		sum_loss_autoencoder 	= 0
		sum_loss_supervised 	= 0
		sum_loss_linear_transformation = 0
		sum_discriminator_z_confidence_true = 0
		sum_discriminator_z_confidence_fake = 0
		sum_discriminator_y_confidence_true = 0
		sum_discriminator_y_confidence_fake = 0

		epoch_start_time = time.time()
		dataset.shuffle()

		# training
		for itr in range(total_iterations_train):
			# update model parameters
			with chainer.using_config("train", True):
				# sample minibatch
				x_u = dataset.sample_unlabeled_minibatch(args.batchsize, gpu=using_gpu)
				x_l, y_l, _ = dataset.sample_labeled_minibatch(args.batchsize, gpu=using_gpu)
				
				### reconstruction phase ###
				if True:
					y_onehot_u, z_u = model.encode_x_yz(x_u, apply_softmax_y=True)
					repr_u = model.encode_yz_representation(y_onehot_u, z_u)
					x_reconstruction_u = model.decode_representation_x(repr_u)
					loss_reconstruction_u = F.mean_squared_error(x_u, x_reconstruction_u)

					y_onehot_l, z_l = model.encode_x_yz(x_l, apply_softmax_y=True)
					repr_l = model.encode_yz_representation(y_onehot_l, z_l)
					x_reconstruction_l = model.decode_representation_x(repr_l)
					loss_reconstruction_l = F.mean_squared_error(x_l, x_reconstruction_l)

					loss_reconstruction = loss_reconstruction_u + loss_reconstruction_l

					model.cleargrads()
					loss_reconstruction.backward()
					optimizer_encoder.update()
					optimizer_decoder.update()

					sum_loss_autoencoder += float(loss_reconstruction.data)

				### adversarial phase ###
				if True:
					y_onehot_fake_u, z_fake_u = model.encode_x_yz(x_u, apply_softmax_y=True)

					z_true = sampler.gaussian(args.batchsize, model.ndim_y, mean=0, var=1)
					y_onehot_true = sampler.onehot_categorical(args.batchsize, model.ndim_y)
					if using_gpu:
						z_true = cuda.to_gpu(z_true)
						y_onehot_true = cuda.to_gpu(y_onehot_true)

					dz_true = model.discriminate_z(z_true, apply_softmax=False)
					dz_fake = model.discriminate_z(z_fake_u, apply_softmax=False)
					dy_true = model.discriminate_y(y_onehot_true, apply_softmax=False)
					dy_fake = model.discriminate_y(y_onehot_fake_u, apply_softmax=False)
开发者ID:musyoku,项目名称:adversarial-autoencoder,代码行数:69,代码来源:train.py

示例4: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import encode_yz_representation [as 别名]
def main():
	parser = argparse.ArgumentParser()
	parser.add_argument("--batchsize", "-b", type=int, default=64)
	parser.add_argument("--total-epochs", "-e", type=int, default=5000)
	parser.add_argument("--num-labeled-data", "-nl", type=int, default=100)
	parser.add_argument("--gpu-device", "-g", type=int, default=0)
	parser.add_argument("--grad-clip", "-gc", type=float, default=5)
	parser.add_argument("--learning-rate", "-lr", type=float, default=0.0001)
	parser.add_argument("--momentum", "-mo", type=float, default=0.1)
	parser.add_argument("--optimizer", "-opt", type=str, default="adam")
	parser.add_argument("--seed", type=int, default=0)
	parser.add_argument("--model", "-m", type=str, default="model.hdf5")
	args = parser.parse_args()

	np.random.seed(args.seed)

	model = Model()
	model.load(args.model)

	mnist_train, mnist_test = chainer.datasets.get_mnist()
	images_train, labels_train = mnist_train._datasets
	images_test, labels_test = mnist_test._datasets

	# normalize
	images_train = (images_train - 0.5) * 2
	images_test = (images_test - 0.5) * 2

	dataset = Dataset(train=(images_train, labels_train), test=(images_test, labels_test))

	total_iterations_train = len(images_train) // args.batchsize

	# optimizers
	optimizer_encoder = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_encoder.setup(model.encoder)
	if args.grad_clip > 0:
		optimizer_encoder.add_hook(GradientClipping(args.grad_clip))

	optimizer_decoder = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_decoder.setup(model.decoder)
	if args.grad_clip > 0:
		optimizer_decoder.add_hook(GradientClipping(args.grad_clip))

	optimizer_discriminator_z = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_discriminator_z.setup(model.discriminator_z)
	if args.grad_clip > 0:
		optimizer_discriminator_z.add_hook(GradientClipping(args.grad_clip))

	optimizer_discriminator_y = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_discriminator_y.setup(model.discriminator_y)
	if args.grad_clip > 0:
		optimizer_discriminator_y.add_hook(GradientClipping(args.grad_clip))

	optimizer_cluster_head = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_cluster_head.setup(model.cluster_head)
	if args.grad_clip > 0:
		optimizer_cluster_head.add_hook(GradientClipping(args.grad_clip))

	using_gpu = False
	if args.gpu_device >= 0:
		cuda.get_device(args.gpu_device).use()
		model.to_gpu()
		using_gpu = True
	xp = model.xp

	# 0 -> true sample
	# 1 -> generated sample
	class_true = np.zeros(args.batchsize, dtype=np.int32)
	class_fake = np.ones(args.batchsize, dtype=np.int32)
	if using_gpu:
		class_true = cuda.to_gpu(class_true)
		class_fake = cuda.to_gpu(class_fake)

	training_start_time = time.time()
	for epoch in range(args.total_epochs):

		sum_loss_generator 		= 0
		sum_loss_discriminator 	= 0
		sum_loss_autoencoder 	= 0
		sum_loss_cluster_head 	= 0
		sum_discriminator_z_confidence_true = 0
		sum_discriminator_z_confidence_fake = 0
		sum_discriminator_y_confidence_true = 0
		sum_discriminator_y_confidence_fake = 0

		epoch_start_time = time.time()
		dataset.shuffle()

		# training
		for itr in range(total_iterations_train):
			# update model parameters
			with chainer.using_config("train", True):
				# sample minibatch
				x_u, _, _ = dataset.sample_minibatch(args.batchsize, gpu=using_gpu)
				
				### reconstruction phase ###
				if True:
					y_onehot_u, z_u = model.encode_x_yz(x_u, apply_softmax_y=True)
					repr_u = model.encode_yz_representation(y_onehot_u, z_u)
					x_reconstruction_u = model.decode_representation_x(repr_u)
					loss_reconstruction = F.mean_squared_error(x_u, x_reconstruction_u)
#.........这里部分代码省略.........
开发者ID:musyoku,项目名称:adversarial-autoencoder,代码行数:103,代码来源:train.py


注:本文中的model.Model.encode_yz_representation方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。