当前位置: 首页>>代码示例>>Python>>正文


Python Model.test方法代码示例

本文整理汇总了Python中model.Model.test方法的典型用法代码示例。如果您正苦于以下问题:Python Model.test方法的具体用法?Python Model.test怎么用?Python Model.test使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model.Model的用法示例。


在下文中一共展示了Model.test方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run_full

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import test [as 别名]
def run_full():
	train = get_data('tmp/train.csv')
	test = get_data('tmp/test.csv')    	
    
	w = [True] * len(train['X'][0])
	C = 0.03
    #C = 0.3
	m1 = Model(has_none=w, C=C)
	m1.fit(train['X'], train['Y'])
	results = m1.test(test['X'])	
	
	error = 0
	tp = 0
	fp = 0
	tn = 0
	fn = 0

	for i in range(len(results)):
		if results[i] != test['Y'][i]:			
			error += 1
			if results[i] == 1:
				fp += 1
			else:
				fn += 1
		elif results[i] == 1:
			tp += 1
		else:
			tn += 1

	print('tp = {}, fp = {}, tn = {}, fn = {}'.format(tp, fp, tn, fn))
	print('error rate: {}'.format(float(error) / len(results)))
	print('precision: {}'.format(float(tp) / (tp + fp + 1)))
	print('recall: {}'.format(float(tp) / (tp + fn + 1)))
	print('specificity: {}'.format(float(tn) / (tn + fp + 1)))
开发者ID:nguyenluongdien,项目名称:event_recommendation,代码行数:36,代码来源:main50.py

示例2: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import test [as 别名]
def main():
    args = [i.lower() for i in sys.argv]

    if 'help' in args or len(args) is 1:
        print_help()

    if 'download' in args:
        down = Downloader()
        down.download()
        down.preprocess()
        down.write_out(train="train.dat",test="test.dat")
    if 'tag' in args:
        t = Tagger()
        t.tag("test.dat")
        t.write_out("test_tagged.dat")
    if 'train' in args:
        m = Model()
        m.train("train.dat")
        m.write_out()
    if 'test' in args:
        m = Model("model.mdl")
        m.test("test_tagged.dat")
开发者ID:willbradbury,项目名称:sandstorm,代码行数:24,代码来源:main.py

示例3: run_compare

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import test [as 别名]
def run_compare():
	train = get_data('tmp/train.csv')
	test = get_data('tmp/test.csv')
    
	C = 0.03
	#C = 0.3
	m1 = Model(C = C)
	m1.fit(train['X'], train['Y'])

	for judged_class in range(2):
		m1.judged_class = judged_class
		if judged_class == 0:
			m1.threshold = 0.25
		else:
			m1.threshold = 0.69

		results = m1.test(test['X'])	
		
		error = 0
		tp = 0
		fp = 0
		tn = 0
		fn = 0

		for i in range(len(results)):
			if results[i] != test['Y'][i]:			
				error += 1
				if results[i] == 1:
					fp += 1
				else:
					fn += 1
			elif results[i] == 1:
				tp += 1
			else:
				tn += 1

		err = float(error) / len(results)
		precision = float(tp) / (tp + fp + 1)
		recall = float(tp) / (tp + fn + 1)
		spec = float(tn) / (tn + fp + 1)

		print('Judged class: {}'.format(judged_class))
		print('tp = {}, fp = {}, tn = {}, fn = {}'.format(tp, fp, tn, fn))
		print('error rate: {}'.format(err))
		print('precision: {}'.format(precision))
		print('recall: {}'.format(recall))
		print('specificity: {}'.format(spec))
		'''
开发者ID:nguyenluongdien,项目名称:event_recommendation,代码行数:50,代码来源:main.py

示例4: run_statistics

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import test [as 别名]
def run_statistics(judged_class = 0, threshold = 0.6):
    train = get_data('tmp/train.csv')
    test = get_data('tmp/test.csv')   
    global out_stats 	
    
    C = 0.03
    #C = 0.3
    m1 = Model(judged_class = judged_class, threshold = threshold, C = C)
    m1.fit(train['X'], train['Y'])

    for w0 in frange(0.1, 0.9, 0.1):
        for w1 in frange(0.1, 0.9, 0.1):
            m1.w0 = w0
            m1.w1 = w1
            print('({0}, {1}) passed'.format(w0, w1))
            results = m1.test(test['X'])	
            
            error = 0
            tp = 0
            fp = 0
            tn = 0
            fn = 0

            for i in range(len(results)):
                if results[i] != test['Y'][i]:			
                    error += 1
                    if results[i] == 1:
                        fp += 1
                    else:
                        fn += 1
                elif results[i] == 1:
                    tp += 1
                else:
                    tn += 1

            err = float(error) / len(results)
            precision = float(tp) / (tp + fp + 1)
            recall = float(tp) / (tp + fn + 1)
            specificity = float(tn) / (tn + fp + 1)           

            out_stats.write('({0}, {1})\t{2}\t{3}\t{4}\t{5}\n'.format(w0, w1, err, precision, recall, specificity))
开发者ID:nguyenluongdien,项目名称:event_recommendation,代码行数:43,代码来源:main.py

示例5: run_crossval

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import test [as 别名]
def run_crossval():
    splits = get_crossval_data()
    
    results = []
    for i in range(2):
        s = splits[i]
        other_s = splits[1 - i]
        
        z = [True] * len(s[0][0])
        w = [True] * len(s[0][0])
        remove_features_rfc = [19,20]
        remove_features_lr = [19,20,21,22,23,24,25,26,29,30,31,32]
        
        for i in remove_features_rfc:
            z[i] = False
        for i in remove_features_lr:
            w[i] = False
        
        m1 = Model(compress=z, has_none=w)
        m1.fit(s[0], s[1])
        
        X = other_s[0]
        predictions = m1.test(X)
        keys = other_s[4]
        pred_dict = {}
        for j in xrange(len(keys)):
            uid, eid = keys[j]
            if uid not in pred_dict:
                pred_dict[uid] = []
            pred_dict[uid].append((eid, predictions[j]))
            
        for uid, l in pred_dict.iteritems():
            l.sort(key=lambda x: -x[1])
            l = [e[0] for e in l]
            results.append(apk(other_s[3][uid], l))
        
    print sum(results) / len(results)
开发者ID:HamedMP,项目名称:kaggle-event-recommendation,代码行数:39,代码来源:main.py

示例6: Model

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import test [as 别名]
FLAGS = flags.FLAGS

flags.DEFINE_boolean('test', False, 'If true, test against a random strategy.')
flags.DEFINE_boolean('play', False, 'If true, play against a trained TD-Gammon strategy.')
flags.DEFINE_boolean('restore', False, 'If true, restore a checkpoint before training.')

model_path = os.environ.get('MODEL_PATH', 'models/')
summary_path = os.environ.get('SUMMARY_PATH', 'summaries/')
checkpoint_path = os.environ.get('CHECKPOINT_PATH', 'checkpoints/')

if not os.path.exists(model_path):
    os.makedirs(model_path)

if not os.path.exists(checkpoint_path):
    os.makedirs(checkpoint_path)

if not os.path.exists(summary_path):
    os.makedirs(summary_path)

if __name__ == '__main__':
    graph = tf.Graph()
    sess = tf.Session(graph=graph)
    with sess.as_default(), graph.as_default():
        model = Model(sess, model_path, summary_path, checkpoint_path, restore=FLAGS.restore)
        if FLAGS.test:
            model.test(episodes=1000)
        elif FLAGS.play:
            model.play()
        else:
            model.train()
开发者ID:codeaudit,项目名称:td-gammon,代码行数:32,代码来源:main.py

示例7: Preprocessor

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import test [as 别名]
from preprocessor import Preprocessor
from model import Model
from optimizer import Optimizer
from global_constants import *

prep = Preprocessor()
train_x, train_y, test_x, test_y = prep.parse_data(PREPROCESS_TYPE["RM_PAD"])
I = train_x.shape[1] # input dim
K = 10               # output dim

model = Model(I, K)
model.set_hidden(HIDDEN_TYPE["EXPAND"])
model.set_activation(ACTIVATION_TYPE["SOFTMAX"])

optimizer = Optimizer(layer=2, loss=LOSS_TYPE["CROSS_ENTROPY"], lr=5, epoch=100000, batch_size=500)
model.set_optimizer(optimizer)

te, ta, ve, va = model.learn(train_x, train_y, time_limit=9.5)
test_err, test_acc = model.test(test_x, test_y)
开发者ID:whyjay,项目名称:SNU,代码行数:21,代码来源:run_rbfn.py

示例8: Trainer

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import test [as 别名]
class Trainer(object):
  def __init__(self, config, rng):
    self.config = config
    self.rng = rng

    self.task = config.task
    self.model_dir = config.model_dir
    self.gpu_memory_fraction = config.gpu_memory_fraction

    self.log_step = config.log_step
    self.max_step = config.max_step
    self.num_log_samples = config.num_log_samples
    self.checkpoint_secs = config.checkpoint_secs

    if config.task.lower().startswith('tsp'):
      self.data_loader = TSPDataLoader(config, rng=self.rng)
    else:
      raise Exception("[!] Unknown task: {}".format(config.task))

    self.model = Model(
        config,
        inputs=self.data_loader.x,
        labels=self.data_loader.y,
        enc_seq_length=self.data_loader.seq_length,
        dec_seq_length=self.data_loader.seq_length,
        mask=self.data_loader.mask)

    self.build_session()
    show_all_variables()

  def build_session(self):
    self.saver = tf.train.Saver()
    self.summary_writer = tf.summary.FileWriter(self.model_dir)

    sv = tf.train.Supervisor(logdir=self.model_dir,
                             is_chief=True,
                             saver=self.saver,
                             summary_op=None,
                             summary_writer=self.summary_writer,
                             save_summaries_secs=300,
                             save_model_secs=self.checkpoint_secs,
                             global_step=self.model.global_step)

    gpu_options = tf.GPUOptions(
        per_process_gpu_memory_fraction=self.gpu_memory_fraction,
        allow_growth=True) # seems to be not working
    sess_config = tf.ConfigProto(allow_soft_placement=True,
                                 gpu_options=gpu_options)

    self.sess = sv.prepare_or_wait_for_session(config=sess_config)

  def train(self):
    tf.logging.info("Training starts...")
    self.data_loader.run_input_queue(self.sess)

    summary_writer = None
    for k in trange(self.max_step, desc="train"):
      fetch = {
          'optim': self.model.optim,
      }
      result = self.model.train(self.sess, fetch, summary_writer)

      if result['step'] % self.log_step == 0:
        self._test(self.summary_writer)

      summary_writer = self._get_summary_writer(result)

    self.data_loader.stop_input_queue()

  def test(self):
    tf.logging.info("Testing starts...")
    self.data_loader.run_input_queue(self.sess)

    for idx in range(10):
      self._test(None)

    self.data_loader.stop_input_queue()

  def _test(self, summary_writer):
    fetch = {
        'loss': self.model.total_inference_loss,
        'pred': self.model.dec_inference,
        'true': self.model.dec_targets,
    }
    result = self.model.test(self.sess, fetch, summary_writer)

    tf.logging.info("")
    tf.logging.info("test loss: {}".format(result['loss']))
    for idx in range(self.num_log_samples):
      pred, true = result['pred'][idx], result['true'][idx]
      tf.logging.info("test pred: {}".format(pred))
      tf.logging.info("test true: {} ({})".format(true, np.array_equal(pred, true)))

    if summary_writer:
      summary_writer.add_summary(result['summary'], result['step'])

  def _get_summary_writer(self, result):
    if result['step'] % self.log_step == 0:
      return self.summary_writer
    else:
#.........这里部分代码省略.........
开发者ID:huyuxiang,项目名称:tensorflow_practice,代码行数:103,代码来源:trainer.py


注:本文中的model.Model.test方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。