当前位置: 首页>>代码示例>>Python>>正文


Python Model.train方法代码示例

本文整理汇总了Python中model.Model.train方法的典型用法代码示例。如果您正苦于以下问题:Python Model.train方法的具体用法?Python Model.train怎么用?Python Model.train使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model.Model的用法示例。


在下文中一共展示了Model.train方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
def train(training_list, model_path, format, is_crf=True, grid=False):

    # Read the data into a Note object
    notes = []
    for txt, con in training_list:
        note_tmp = Note(format)       # Create Note
        note_tmp.read(txt, con)       # Read data into Note
        notes.append(note_tmp)        # Add the Note to the list


    # file names
    if not notes:
        print 'Error: Cannot train on 0 files. Terminating train.'
        return 1


    # Create a Machine Learning model
    model = Model(is_crf=is_crf)


    # Train the model using the Note's data
    model.train(notes, grid)


    # Pickle dump
    print 'pickle dump'
    with open(model_path, "wb") as m_file:
        pickle.dump(model, m_file)
开发者ID:aussina,项目名称:CliNER,代码行数:30,代码来源:train.py

示例2: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
def main():
  fun = 'fc_cifar'
  if len(sys.argv) > 1:
    fun = sys.argv[1]
  model = Model(name=fun, lr=0.1, n_epochs=500, on_gpu=True)
  model = eval(fun + '(model)')
  model.train()
开发者ID:DevSinghSachan,项目名称:reg,代码行数:9,代码来源:main.py

示例3: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
def main(data_filename,stat_filename,max_iter,sample_rate,learn_rate,max_depth,split_points):
    dataset=DataSet(data_filename);
    print "Model parameters configuration:[data_file=%s,stat_file=%s,max_iter=%d,sample_rate=%f,learn_rate=%f,max_depth=%d,split_points=%d]"%(data_filename,stat_filename,max_iter,sample_rate,learn_rate,max_depth,split_points);
    dataset.describe();
    stat_file=open(stat_filename,"w");
    stat_file.write("iteration\taverage loss in train data\tprediction accuracy on test data\taverage loss in test data\n");
    model=Model(max_iter,sample_rate,learn_rate,max_depth,split_points); 
    train_data=sample(dataset.get_instances_idset(),int(dataset.size()*2.0/3.0));
    test_data=set(dataset.get_instances_idset())-set(train_data);
    model.train(dataset,train_data,stat_file,test_data);
    #model.test(dataset,test_data);
    stat_file.close();
开发者ID:FurongPeng,项目名称:GBDT,代码行数:14,代码来源:gbt.py

示例4: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
def main(_):
    prepare_dirs_and_logger(config)

    if not config.task.lower().startswith('tsp'):
        raise Exception("[!] Task should starts with TSP")

    if config.max_enc_length is None:
        config.max_enc_length = config.max_data_length
    if config.max_dec_length is None:
        config.max_dec_length = config.max_data_length

    rng = np.random.RandomState(config.random_seed)
    tf.set_random_seed(config.random_seed)

    model = Model(config)

    batch_size = config.batch_size

    train_enc_seq, train_target_seq, train_enc_seq_length, train_target_seq_length = gen_data('data/tsp10.txt')

    eval_enc_seq,eval_target_seq,eval_enc_seq_length,eval_target_seq_length = train_enc_seq[-batch_size:], \
                                                                              train_target_seq[-batch_size:], \
                                                                              train_enc_seq_length[-batch_size:], \
                                                                              train_target_seq_length[-batch_size:]

    train_enc_seq, train_target_seq, train_enc_seq_length, train_target_seq_length= train_enc_seq[: -batch_size], \
                                                                                  train_target_seq[:-batch_size], \
                                                                                  train_enc_seq_length[:-batch_size], \
                                                                                  train_target_seq_length[:-batch_size]

    test_enc_seq, test_target_seq, test_enc_seq_length, test_target_seq_length = gen_data('data/tsp10_test.txt')

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for step in range(min(config.max_step,len(train_enc_seq)//batch_size)):
            train_batch={
                'enc_seq': train_enc_seq[step * batch_size:(step + 1) * batch_size],
                'enc_seq_length': train_enc_seq_length[step * batch_size:(step + 1) * batch_size],
                'target_seq': train_target_seq[step * batch_size:(step + 1) * batch_size],
                'target_seq_length': train_target_seq_length[step * batch_size:(step + 1) * batch_size]
            }
            loss = model.train(sess,train_batch)
            print(str(step) + " train loss : " + str(loss))

            if step > 0 and step % config.eval_step == 0:
                eval_batch = {
                    'enc_seq': eval_enc_seq,
                    'enc_seq_length': eval_enc_seq_length,
                    'target_seq': eval_target_seq,
                    'target_seq_length': eval_target_seq_length
                }
                eval_loss = model.eval(sess,eval_batch)
                print(str(step) + " eval loss : " + str(eval_loss))
开发者ID:huyuxiang,项目名称:tensorflow_practice,代码行数:55,代码来源:main.py

示例5: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
def main():
    args = [i.lower() for i in sys.argv]

    if 'help' in args or len(args) is 1:
        print_help()

    if 'download' in args:
        down = Downloader()
        down.download()
        down.preprocess()
        down.write_out(train="train.dat",test="test.dat")
    if 'tag' in args:
        t = Tagger()
        t.tag("test.dat")
        t.write_out("test_tagged.dat")
    if 'train' in args:
        m = Model()
        m.train("train.dat")
        m.write_out()
    if 'test' in args:
        m = Model("model.mdl")
        m.test("test_tagged.dat")
开发者ID:willbradbury,项目名称:sandstorm,代码行数:24,代码来源:main.py

示例6: Model

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
from model import Model
import argparse

parser = argparse.ArgumentParser(description='')
parser.add_argument('--epoch', dest='epoch', type=int, default=20, help='# of epoch')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=128, help='# images in batch')
parser.add_argument('--lr', dest='lr', type=int, default=0.001, help='initial learning rate')
parser.add_argument('--state', dest='state', type=int, default=1024, help='LSTM hidden state size')
parser.add_argument('--embed', dest='embed', type=int, default=300, help='Embedding vector size')
parser.add_argument('--drop', dest='drop', type=int, default=0.5, help='Dropout probability')
parser.add_argument('--freq', dest='freq', type=int, default=1024, help='How many top answers')
parser.add_argument('--resnet_features', dest='resnet', 
                    default='resnet_ckpt/resnet_v2_152.ckpt', 
                    help='Path to resnet pretrained weights')
parser.add_argument('--project', dest='project', type=bool, 
                    default=False, help='Project text features instead of tile')

args = parser.parse_args()

vqa_model = Model(batch_size = args.bs, 
                  init_lr=args.bs, 
                  state_size=args.state,
                  embedding_size=args.embed, 
                  dropout_prob=args.drop, 
                  most_freq_limit=args.freq,
                  resnet_weights_path=args.resnet,
                  project=args.project)

vqa_model.train(args.epoch)
                    
开发者ID:momih,项目名称:vqa_tensorflow,代码行数:31,代码来源:main.py

示例7: Model

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
  model = Model(user_count, item_count, cate_count, cate_list)
  sess.run(tf.global_variables_initializer())
  sess.run(tf.local_variables_initializer())

  print('test_gauc: %.4f\t test_auc: %.4f' % _eval(sess, model))
  sys.stdout.flush()
  lr = 1
  start_time = time.time()
  for _ in range(30):

    random.shuffle(train_set)

    epoch_size = round(len(train_set) / train_batch_size)
    loss_sum = 0.0
    for _, uij in DataInput(train_set, train_batch_size):
      loss = model.train(sess, uij, lr)
      loss_sum += loss

      if model.global_step.eval() % 1000 == 0:
        test_gauc, Auc = _eval(sess, model)
        print('Epoch %d Global_step %d\tTrain_loss: %.4f\tEval_GAUC: %.4f\tEval_AUC: %.4f' %
              (model.global_epoch_step.eval(), model.global_step.eval(),
               loss_sum / 1000, test_gauc, Auc))
        sys.stdout.flush()
        loss_sum = 0.0

      if model.global_step.eval() % 336000 == 0:
        lr = 0.1

    print('Epoch %d DONE\tCost time: %.2f' %
          (model.global_epoch_step.eval(), time.time()-start_time))
开发者ID:13162201530,项目名称:DeepInterestNetwork,代码行数:33,代码来源:train.py

示例8: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "-t",
        dest="txt",
        help="The files that contain the training examples",
        default=os.path.join(
            os.path.dirname(os.path.realpath(__file__)), "../data/concept_assertion_relation_training_data/merged/txt/*"
        ),
    )

    parser.add_argument(
        "-c",
        dest="con",
        help="The files that contain the labels for the training examples",
        default=os.path.join(
            os.path.dirname(os.path.realpath(__file__)),
            "../data/concept_assertion_relation_training_data/merged/concept/*",
        ),
    )

    parser.add_argument(
        "-m",
        dest="model",
        help="Path to the model that should be generated",
        default=os.path.join(os.path.dirname(os.path.realpath(__file__)), "../models/awesome.model"),
    )

    parser.add_argument(
        "-d", dest="disabled_features", help="The features that should not be used", nargs="+", default=None
    )

    parser.add_argument(
        "-e",
        dest="enabled_features",
        help="The features that should be used. This option trumps -d",
        nargs="+",
        default=None,
    )

    parser.add_argument("--no-svm", dest="no_svm", action="store_true", help="Disable SVM model generation")

    parser.add_argument("--no-lin", dest="no_lin", action="store_true", help="Disable LIN model generation")

    parser.add_argument("--no-crf", dest="no_crf", action="store_true", help="Disable CRF model generation")

    args = parser.parse_args()

    training_list = []
    txt_files = glob.glob(args.txt)
    con_files = glob.glob(args.con)

    txt_files_map = helper.map_files(txt_files)
    con_files_map = helper.map_files(con_files)

    for k in txt_files_map:
        if k in con_files_map:
            training_list.append((txt_files_map[k], con_files_map[k]))

    type = 0
    if not args.no_svm:
        type = type | libml.SVM

    if not args.no_lin:
        type = type | libml.LIN

    if not args.no_crf:
        type = type | libml.CRF

        # Get data and labels from files
    data = []
    labels = []
    for txt, con in training_list:
        datum = read_txt(txt)
        data += datum
        labels += read_con(con, datum)

        # Train a model on the data and labels
    model = Model(filename=args.model, type=type)

    if args.disabled_features != None:
        model.enabled_features = model.enabled_features - Set(args.disabled_features)

    if args.enabled_features != None:
        model.enabled_features = Set(args.enabled_features)

    model.train(data, labels)
开发者ID:tnaumann,项目名称:ConceptExtraction,代码行数:90,代码来源:train.py

示例9: print

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
    print('Running fold...', len(train_index), len(valid_index))

    X_train, y_train = X_train_raw[train_index,...], y_train_raw[train_index,...]
    X_valid, y_valid = X_train_raw[valid_index,...], y_train_raw[valid_index,...]

    with tf.Graph().as_default(), tf.Session() as sess:
        layers = vgg_bn()
        model = Model(layers, num_folds, batch_size=BATCH_SIZE)

        patience = 2
        wait = 0
        best = np.Inf

        print('Begin training...')
        for epoch in range(NUM_EPOCHS):
            model.train(X_train, y_train, epoch)

            print('Begin validation...')
            loss, accuracy, score = model.validate(X_valid, y_valid)

            print('Validation: fold: {}, epoch: {}, loss: {}, accuracy: {}, score: {}'.format(num_folds, epoch, loss, accuracy, score))

            if loss < best:
                print('New best validation loss! Was: {}, Now: {}'.format(best, loss))
                best = loss
                wait = 0
            else:
                wait += 1
                print('Validation loss did not improve for {}/{} epochs.'.format(wait, patience))

            if wait == 2:
开发者ID:ambertch,项目名称:distracted-drivers-tf,代码行数:33,代码来源:main.py

示例10: Model

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
FLAGS = flags.FLAGS

flags.DEFINE_boolean('test', False, 'If true, test against a random strategy.')
flags.DEFINE_boolean('play', False, 'If true, play against a trained TD-Gammon strategy.')
flags.DEFINE_boolean('restore', False, 'If true, restore a checkpoint before training.')

model_path = os.environ.get('MODEL_PATH', 'models/')
summary_path = os.environ.get('SUMMARY_PATH', 'summaries/')
checkpoint_path = os.environ.get('CHECKPOINT_PATH', 'checkpoints/')

if not os.path.exists(model_path):
    os.makedirs(model_path)

if not os.path.exists(checkpoint_path):
    os.makedirs(checkpoint_path)

if not os.path.exists(summary_path):
    os.makedirs(summary_path)

if __name__ == '__main__':
    graph = tf.Graph()
    sess = tf.Session(graph=graph)
    with sess.as_default(), graph.as_default():
        model = Model(sess, model_path, summary_path, checkpoint_path, restore=FLAGS.restore)
        if FLAGS.test:
            model.test(episodes=1000)
        elif FLAGS.play:
            model.play()
        else:
            model.train()
开发者ID:codeaudit,项目名称:td-gammon,代码行数:32,代码来源:main.py

示例11: Model

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
flags.DEFINE_boolean('random_selfplay', False, 'Watch 2 random agents play')
flags.DEFINE_boolean('restore', False, 'If true, restore a checkpoint before training.')
flags.DEFINE_integer('train_episodes', 5000, 'How many episodes to train for')

model_path = os.environ.get('MODEL_PATH', 'models/')
summary_path = os.environ.get('SUMMARY_PATH', 'summaries/')
checkpoint_path = os.environ.get('CHECKPOINT_PATH', 'checkpoints/')

if not os.path.exists(model_path):
    os.makedirs(model_path)

if not os.path.exists(checkpoint_path):
    os.makedirs(checkpoint_path)

if not os.path.exists(summary_path):
    os.makedirs(summary_path)

if __name__ == '__main__':
    graph = tf.Graph()
    sess = tf.Session(graph=graph)
    with sess.as_default(), graph.as_default():
        model = Model(sess, model_path, summary_path, checkpoint_path, restore=FLAGS.restore)
        if FLAGS.test:
            model.test(episodes=1000)
        elif FLAGS.play:
            model.play()
        elif FLAGS.random_selfplay:
            model.random_selfplay()
        else:
            model.train(FLAGS.train_episodes)
开发者ID:rozim,项目名称:td-gammon,代码行数:32,代码来源:main.py

示例12: max

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
    for column in columns:
        print "%s" % column
        all_values = data_set.all_values(column)
        print all_values
        print "min: %s max: %s" % (min([float(value) for value in all_values]), max([float(value) for value in all_values]))
        print "\n"
    sys.exit(1)



if args.traindata:
    data_set = Data(args.traindata)
    data_set.open_csv()
    for row in data_set:
        #print "input row: %s" % row
        model.train(row, config_dict["target_key"])
        #print model

    if args.do_prune:
        model.prune()
        #print model
    


def run_test():
    train_set = Data(args.testdata)
    train_set.open_csv()
    correct_dict = {}
    incorrect_dict = {}
    num_correct = 0
    num_rows = 0
开发者ID:mflood,项目名称:neural,代码行数:33,代码来源:kickoff.py

示例13: Exception

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
import argparse

from model import Model
parser = argparse.ArgumentParser(
    formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--n_iter', type=int, default=10000,
                    help='number of iterations')
parser.add_argument('--save_dir', type=str, default='save',
                    help='dir for saving weights')
parser.add_argument('--data_path', type=str,
                    help='path to train data')
parser.add_argument('--learning_rate', type=int, default=0.0001,
                    help='learning rate')
parser.add_argument('--batch_size', type=int, default=64,
                    help='batch size')
parser.add_argument('--restore_from', type=str,
                    help='path to train saved weights')

args = parser.parse_args()

if __name__ == '__main__':
    if not args.data_path:
        raise Exception('please specify path to train data with --data_path')

    gen = Model(args.learning_rate)
    gen.train(args.data_path, args.save_dir, args.n_iter, args.batch_size, args.restore_from)
开发者ID:chipitsine,项目名称:ClickHouse,代码行数:28,代码来源:train.py

示例14: Trainer

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
class Trainer(object):
  def __init__(self, config, rng):
    self.config = config
    self.rng = rng

    self.task = config.task
    self.model_dir = config.model_dir
    self.gpu_memory_fraction = config.gpu_memory_fraction

    self.log_step = config.log_step
    self.max_step = config.max_step
    self.num_log_samples = config.num_log_samples
    self.checkpoint_secs = config.checkpoint_secs

    if config.task.lower().startswith('tsp'):
      self.data_loader = TSPDataLoader(config, rng=self.rng)
    else:
      raise Exception("[!] Unknown task: {}".format(config.task))

    self.model = Model(
        config,
        inputs=self.data_loader.x,
        labels=self.data_loader.y,
        enc_seq_length=self.data_loader.seq_length,
        dec_seq_length=self.data_loader.seq_length,
        mask=self.data_loader.mask)

    self.build_session()
    show_all_variables()

  def build_session(self):
    self.saver = tf.train.Saver()
    self.summary_writer = tf.summary.FileWriter(self.model_dir)

    sv = tf.train.Supervisor(logdir=self.model_dir,
                             is_chief=True,
                             saver=self.saver,
                             summary_op=None,
                             summary_writer=self.summary_writer,
                             save_summaries_secs=300,
                             save_model_secs=self.checkpoint_secs,
                             global_step=self.model.global_step)

    gpu_options = tf.GPUOptions(
        per_process_gpu_memory_fraction=self.gpu_memory_fraction,
        allow_growth=True) # seems to be not working
    sess_config = tf.ConfigProto(allow_soft_placement=True,
                                 gpu_options=gpu_options)

    self.sess = sv.prepare_or_wait_for_session(config=sess_config)

  def train(self):
    tf.logging.info("Training starts...")
    self.data_loader.run_input_queue(self.sess)

    summary_writer = None
    for k in trange(self.max_step, desc="train"):
      fetch = {
          'optim': self.model.optim,
      }
      result = self.model.train(self.sess, fetch, summary_writer)

      if result['step'] % self.log_step == 0:
        self._test(self.summary_writer)

      summary_writer = self._get_summary_writer(result)

    self.data_loader.stop_input_queue()

  def test(self):
    tf.logging.info("Testing starts...")
    self.data_loader.run_input_queue(self.sess)

    for idx in range(10):
      self._test(None)

    self.data_loader.stop_input_queue()

  def _test(self, summary_writer):
    fetch = {
        'loss': self.model.total_inference_loss,
        'pred': self.model.dec_inference,
        'true': self.model.dec_targets,
    }
    result = self.model.test(self.sess, fetch, summary_writer)

    tf.logging.info("")
    tf.logging.info("test loss: {}".format(result['loss']))
    for idx in range(self.num_log_samples):
      pred, true = result['pred'][idx], result['true'][idx]
      tf.logging.info("test pred: {}".format(pred))
      tf.logging.info("test true: {} ({})".format(true, np.array_equal(pred, true)))

    if summary_writer:
      summary_writer.add_summary(result['summary'], result['step'])

  def _get_summary_writer(self, result):
    if result['step'] % self.log_step == 0:
      return self.summary_writer
    else:
#.........这里部分代码省略.........
开发者ID:huyuxiang,项目名称:tensorflow_practice,代码行数:103,代码来源:trainer.py

示例15: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import train [as 别名]
def main():

    # Parse command line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument("--pred",
        help = "Predictions file",
        dest = "pred",
    )
    parser.add_argument("--model",
        help = "Where to store model",
        dest = "model",
    )
    parser.add_argument("--no-context",
        help = "Should context features be disabled",
        dest = "no_context",
        action = 'store_true',
    )
    parser.add_argument("--overfit",
        help = "Should the model do an overfitting sanity check?",
        dest = "overfit",
        action = 'store_true'
    )
    args = parser.parse_args()

    # Error check args
    if not args.pred or not os.path.exists(args.pred):
        print >>sys.stderr, '\n\tERROR: must provide predictions file\n'
        parser.print_help()
        exit(1)
    if not args.model or not os.path.exists(os.path.dirname(args.model)):
        print >>sys.stderr, '\n\tERROR: must provide where to store model\n'
        parser.print_help()
        exit(1)

    # load predictions
    all_pred = load_predictions.Predictions(args.pred, verbose=0)
    train_pred = all_pred.images()

    # load annotations
    all_gold = load_annotations.Annotations(train_pred)
    train_gold = all_gold.images()


    # Ensure you're looking at the same set of images
    predicted_names = set([ img.getName() for img in train_pred ])
    annotated_names = set([ img.getName() for img in train_gold ])
    common_names = predicted_names & annotated_names

    print 'predictions: ', len(predicted_names)
    print 'annotations: ', len(annotated_names)
    print 'common:      ', len(common_names)

    pred_imgs= {i.getName():i for i in train_pred if i.getName() in common_names}
    gold_imgs= {i.getName():i for i in train_gold if i.getName() in common_names}

    print 'predictions: ', len(pred_imgs)
    print 'annotations: ', len(gold_imgs)

    # Build classifier that generates context features
    m = Model(context=not args.no_context, overfit=args.overfit)
    m.train(pred_imgs, gold_imgs)

    # TODO - arg for where to serialize model
    # Serialize the model
    print 'serializing ', args.model
    with open(args.model, 'wb') as f:
        pickle.dump(m, f)
开发者ID:wboag,项目名称:context_vision,代码行数:69,代码来源:train.py


注:本文中的model.Model.train方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。