当前位置: 首页>>代码示例>>Python>>正文


Python Model.to_gpu方法代码示例

本文整理汇总了Python中model.Model.to_gpu方法的典型用法代码示例。如果您正苦于以下问题:Python Model.to_gpu方法的具体用法?Python Model.to_gpu怎么用?Python Model.to_gpu使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model.Model的用法示例。


在下文中一共展示了Model.to_gpu方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import to_gpu [as 别名]
def main():
	parser = argparse.ArgumentParser()
	parser.add_argument("--batchsize", "-b", type=int, default=64)
	parser.add_argument("--total-epochs", "-e", type=int, default=5000)
	parser.add_argument("--num-labeled-data", "-nl", type=int, default=100)
	parser.add_argument("--gpu-device", "-g", type=int, default=0)
	parser.add_argument("--grad-clip", "-gc", type=float, default=5)
	parser.add_argument("--seed", type=int, default=0)
	parser.add_argument("--model", "-m", type=str, default="model.hdf5")
	args = parser.parse_args()

	np.random.seed(args.seed)

	model = Model()
	model.load(args.model)

	mnist_train, mnist_test = chainer.datasets.get_mnist()
	images_train, labels_train = mnist_train._datasets
	images_test, labels_test = mnist_test._datasets

	# normalize
	images_train = (images_train - 0.5) * 2
	images_test = (images_test - 0.5) * 2

	dataset = Dataset(train=(images_train, labels_train), 
					  test=(images_test, labels_test), 
					  num_labeled_data=args.num_labeled_data, 
					  num_classes=model.ndim_y)
	print("#labeled:	{}".format(dataset.get_num_labeled_data()))
	print("#unlabeled:	{}".format(dataset.get_num_unlabeled_data()))
	_, labels = dataset.get_labeled_data()
	print("labeled data:", labels)

	total_iterations_train = len(images_train) // args.batchsize

	# optimizers
	optimizer_encoder = Optimizer("msgd", 0.01, 0.9)
	optimizer_encoder.setup(model.encoder)
	if args.grad_clip > 0:
		optimizer_encoder.add_hook(GradientClipping(args.grad_clip))

	optimizer_semi_supervised = Optimizer("msgd", 0.1, 0.9)
	optimizer_semi_supervised.setup(model.encoder)
	if args.grad_clip > 0:
		optimizer_semi_supervised.add_hook(GradientClipping(args.grad_clip))

	optimizer_generator = Optimizer("msgd", 0.1, 0.1)
	optimizer_generator.setup(model.encoder)
	if args.grad_clip > 0:
		optimizer_generator.add_hook(GradientClipping(args.grad_clip))

	optimizer_decoder = Optimizer("msgd", 0.01, 0.9)
	optimizer_decoder.setup(model.decoder)
	if args.grad_clip > 0:
		optimizer_decoder.add_hook(GradientClipping(args.grad_clip))

	optimizer_discriminator_z = Optimizer("msgd", 0.1, 0.1)
	optimizer_discriminator_z.setup(model.discriminator_z)
	if args.grad_clip > 0:
		optimizer_discriminator_z.add_hook(GradientClipping(args.grad_clip))

	optimizer_discriminator_y = Optimizer("msgd", 0.1, 0.1)
	optimizer_discriminator_y.setup(model.discriminator_y)
	if args.grad_clip > 0:
		optimizer_discriminator_y.add_hook(GradientClipping(args.grad_clip))

	optimizer_linear_transformation = Optimizer("msgd", 0.01, 0.9)
	optimizer_linear_transformation.setup(model.linear_transformation)
	if args.grad_clip > 0:
		optimizer_linear_transformation.add_hook(GradientClipping(args.grad_clip))

	using_gpu = False
	if args.gpu_device >= 0:
		cuda.get_device(args.gpu_device).use()
		model.to_gpu()
		using_gpu = True
	xp = model.xp

	# 0 -> true sample
	# 1 -> generated sample
	class_true = np.zeros(args.batchsize, dtype=np.int32)
	class_fake = np.ones(args.batchsize, dtype=np.int32)
	if using_gpu:
		class_true = cuda.to_gpu(class_true)
		class_fake = cuda.to_gpu(class_fake)

	# 2D circle
	# we use a linear transformation to map the 10D representation to a 2D space such that 
	# the cluster heads are mapped to the points that are uniformly placed on a 2D circle.
	rad = math.radians(360 / model.ndim_y)
	radius = 5
	mapped_cluster_head_2d_target = np.zeros((10, 2), dtype=np.float32)
	for n in range(model.ndim_y):
		x = math.cos(rad * n) * radius
		y = math.sin(rad * n) * radius
		mapped_cluster_head_2d_target[n] = (x, y)
	if using_gpu:
		mapped_cluster_head_2d_target = cuda.to_gpu(mapped_cluster_head_2d_target)

	# training loop
#.........这里部分代码省略.........
开发者ID:musyoku,项目名称:adversarial-autoencoder,代码行数:103,代码来源:train.py

示例2: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import to_gpu [as 别名]
def main():
	parser = argparse.ArgumentParser()
	parser.add_argument("--batchsize", "-b", type=int, default=64)
	parser.add_argument("--total-epochs", "-e", type=int, default=300)
	parser.add_argument("--gpu-device", "-g", type=int, default=0)
	parser.add_argument("--grad-clip", "-gc", type=float, default=5)
	parser.add_argument("--learning-rate", "-lr", type=float, default=0.0001)
	parser.add_argument("--momentum", "-mo", type=float, default=0.5)
	parser.add_argument("--optimizer", "-opt", type=str, default="adam")
	parser.add_argument("--model", "-m", type=str, default="model.hdf5")
	args = parser.parse_args()

	mnist_train, mnist_test = chainer.datasets.get_mnist()
	images_train, labels_train = mnist_train._datasets
	images_test, labels_test = mnist_test._datasets

	# normalize
	images_train = (images_train - 0.5) * 2
	images_test = (images_test - 0.5) * 2

	dataset = Dataset(train=(images_train, labels_train), test=(images_test, labels_test))

	total_iterations_train = len(images_train) // args.batchsize

	model = Model()
	model.load(args.model)

	# optimizers
	optimizer_encoder = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_encoder.setup(model.encoder)
	if args.grad_clip > 0:
		optimizer_encoder.add_hook(GradientClipping(args.grad_clip))

	optimizer_decoder = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_decoder.setup(model.decoder)
	if args.grad_clip > 0:
		optimizer_decoder.add_hook(GradientClipping(args.grad_clip))

	optimizer_discriminator = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_discriminator.setup(model.discriminator)
	if args.grad_clip > 0:
		optimizer_discriminator.add_hook(GradientClipping(args.grad_clip))

	using_gpu = False
	if args.gpu_device >= 0:
		cuda.get_device(args.gpu_device).use()
		model.to_gpu()
		using_gpu = True
	xp = model.xp

	# 0 -> true sample
	# 1 -> generated sample
	class_true = np.zeros(args.batchsize, dtype=np.int32)
	class_fake = np.ones(args.batchsize, dtype=np.int32)
	if using_gpu:
		class_true = cuda.to_gpu(class_true)
		class_fake = cuda.to_gpu(class_fake)

	training_start_time = time.time()
	for epoch in range(args.total_epochs):

		sum_loss_generator = 0
		sum_loss_discriminator = 0
		sum_loss_autoencoder = 0
		sum_discriminator_confidence_true = 0
		sum_discriminator_confidence_fake = 0
		epoch_start_time = time.time()
		dataset.shuffle()

		# training
		for itr in range(total_iterations_train):
			# update model parameters
			with chainer.using_config("train", True):
				x_l, y_l, y_onehot_l = dataset.sample_minibatch(args.batchsize, gpu=using_gpu)

				### reconstruction phase ###
				if True:
					z_fake_l = model.encode_x_z(x_l)
					x_reconstruction_l = model.decode_yz_x(y_onehot_l, z_fake_l)
					loss_reconstruction = F.mean_squared_error(x_l, x_reconstruction_l)

					model.cleargrads()
					loss_reconstruction.backward()
					optimizer_encoder.update()
					optimizer_decoder.update()

				### adversarial phase ###
				if True:
					z_fake_l = model.encode_x_z(x_l)
					z_true_batch = sampler.gaussian(args.batchsize, model.ndim_z, mean=0, var=1)
					if using_gpu:
						z_true_batch = cuda.to_gpu(z_true_batch)
					dz_true = model.discriminate_z(z_true_batch, apply_softmax=False)
					dz_fake = model.discriminate_z(z_fake_l, apply_softmax=False)
					discriminator_confidence_true = float(xp.mean(F.softmax(dz_true).data[:, 0]))
					discriminator_confidence_fake = float(xp.mean(F.softmax(dz_fake).data[:, 1]))
					loss_discriminator = F.softmax_cross_entropy(dz_true, class_true) + F.softmax_cross_entropy(dz_fake, class_fake)

					model.cleargrads()
					loss_discriminator.backward()
#.........这里部分代码省略.........
开发者ID:musyoku,项目名称:adversarial-autoencoder,代码行数:103,代码来源:train.py

示例3: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import to_gpu [as 别名]
def main(args):
    if args.gpu >= 0:
        cuda.check_cuda_available()
    xp = cuda.cupy if args.gpu >= 0 else np

    model_id = build_model_id(args)
    model_path = build_model_path(args, model_id)
    setup_model_dir(args, model_path)
    sys.stdout, sys.stderr = setup_logging(args)

    x_train, y_train = load_model_data(args.train_file,
            args.data_name, args.target_name,
            n=args.n_train)
    x_validation, y_validation = load_model_data(
            args.validation_file,
            args.data_name, args.target_name,
            n=args.n_validation)

    rng = np.random.RandomState(args.seed)

    N = len(x_train)
    N_validation = len(x_validation)

    n_classes = max(np.unique(y_train)) + 1
    json_cfg = load_model_json(args, x_train, n_classes)

    print('args.model_dir', args.model_dir)
    sys.path.append(args.model_dir)
    from model import Model
    model_cfg = ModelConfig(**json_cfg)
    model = Model(model_cfg)
    setattr(model, 'stop_training', False)
    
    if args.gpu >= 0:
        cuda.get_device(args.gpu).use()
        model.to_gpu()
    
    best_accuracy = 0.
    best_epoch = 0
    
    def keep_training(epoch, best_epoch):
        if model_cfg.n_epochs is not None and epoch > model_cfg.n_epochs:
                return False
        if epoch > 1 and epoch - best_epoch > model_cfg.patience:
            return False
        return True
    
    epoch = 1
    
    while True:
        if not keep_training(epoch, best_epoch):
            break
    
        if args.shuffle:
            perm = np.random.permutation(N)
        else:
            perm = np.arange(N)
    
        sum_accuracy = 0
        sum_loss = 0

        pbar = progressbar.ProgressBar(term_width=40,
            widgets=[' ', progressbar.Percentage(),
            ' ', progressbar.ETA()],
            maxval=N).start()

        for j, i in enumerate(six.moves.range(0, N, model_cfg.batch_size)):
            pbar.update(j+1)
            x_batch = xp.asarray(x_train[perm[i:i + model_cfg.batch_size]].flatten())
            y_batch = xp.asarray(y_train[perm[i:i + model_cfg.batch_size]])
            pred, loss, acc = model.fit(x_batch, y_batch)
            sum_loss += float(loss.data) * len(y_batch)
            sum_accuracy += float(acc.data) * len(y_batch)

        pbar.finish()
        print('train epoch={}, mean loss={}, accuracy={}'.format(
            epoch, sum_loss / N, sum_accuracy / N))
    
        # Validation set evaluation
        sum_accuracy = 0
        sum_loss = 0

        pbar = progressbar.ProgressBar(term_width=40,
            widgets=[' ', progressbar.Percentage(),
            ' ', progressbar.ETA()],
            maxval=N_validation).start()

        for i in six.moves.range(0, N_validation, model_cfg.batch_size):
            pbar.update(i+1)
            x_batch = xp.asarray(x_validation[i:i + model_cfg.batch_size].flatten())
            y_batch = xp.asarray(y_validation[i:i + model_cfg.batch_size])
            pred, loss, acc = model.predict(x_batch, target=y_batch)
            sum_loss += float(loss.data) * len(y_batch)
            sum_accuracy += float(acc.data) * len(y_batch)

        pbar.finish()
        validation_accuracy = sum_accuracy / N_validation
        validation_loss = sum_loss / N_validation
    
        if validation_accuracy > best_accuracy:
#.........这里部分代码省略.........
开发者ID:Libardo1,项目名称:modeling,代码行数:103,代码来源:train_chainer.py

示例4: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import to_gpu [as 别名]
def main():
	parser = argparse.ArgumentParser()
	parser.add_argument("--batchsize", "-b", type=int, default=64)
	parser.add_argument("--total-epochs", "-e", type=int, default=5000)
	parser.add_argument("--num-labeled-data", "-nl", type=int, default=100)
	parser.add_argument("--gpu-device", "-g", type=int, default=0)
	parser.add_argument("--grad-clip", "-gc", type=float, default=5)
	parser.add_argument("--learning-rate", "-lr", type=float, default=0.0001)
	parser.add_argument("--momentum", "-mo", type=float, default=0.1)
	parser.add_argument("--optimizer", "-opt", type=str, default="adam")
	parser.add_argument("--seed", type=int, default=0)
	parser.add_argument("--model", "-m", type=str, default="model.hdf5")
	args = parser.parse_args()

	np.random.seed(args.seed)

	model = Model()
	model.load(args.model)

	mnist_train, mnist_test = chainer.datasets.get_mnist()
	images_train, labels_train = mnist_train._datasets
	images_test, labels_test = mnist_test._datasets

	# normalize
	images_train = (images_train - 0.5) * 2
	images_test = (images_test - 0.5) * 2

	dataset = Dataset(train=(images_train, labels_train), test=(images_test, labels_test))

	total_iterations_train = len(images_train) // args.batchsize

	# optimizers
	optimizer_encoder = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_encoder.setup(model.encoder)
	if args.grad_clip > 0:
		optimizer_encoder.add_hook(GradientClipping(args.grad_clip))

	optimizer_decoder = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_decoder.setup(model.decoder)
	if args.grad_clip > 0:
		optimizer_decoder.add_hook(GradientClipping(args.grad_clip))

	optimizer_discriminator_z = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_discriminator_z.setup(model.discriminator_z)
	if args.grad_clip > 0:
		optimizer_discriminator_z.add_hook(GradientClipping(args.grad_clip))

	optimizer_discriminator_y = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_discriminator_y.setup(model.discriminator_y)
	if args.grad_clip > 0:
		optimizer_discriminator_y.add_hook(GradientClipping(args.grad_clip))

	optimizer_cluster_head = Optimizer(args.optimizer, args.learning_rate, args.momentum)
	optimizer_cluster_head.setup(model.cluster_head)
	if args.grad_clip > 0:
		optimizer_cluster_head.add_hook(GradientClipping(args.grad_clip))

	using_gpu = False
	if args.gpu_device >= 0:
		cuda.get_device(args.gpu_device).use()
		model.to_gpu()
		using_gpu = True
	xp = model.xp

	# 0 -> true sample
	# 1 -> generated sample
	class_true = np.zeros(args.batchsize, dtype=np.int32)
	class_fake = np.ones(args.batchsize, dtype=np.int32)
	if using_gpu:
		class_true = cuda.to_gpu(class_true)
		class_fake = cuda.to_gpu(class_fake)

	training_start_time = time.time()
	for epoch in range(args.total_epochs):

		sum_loss_generator 		= 0
		sum_loss_discriminator 	= 0
		sum_loss_autoencoder 	= 0
		sum_loss_cluster_head 	= 0
		sum_discriminator_z_confidence_true = 0
		sum_discriminator_z_confidence_fake = 0
		sum_discriminator_y_confidence_true = 0
		sum_discriminator_y_confidence_fake = 0

		epoch_start_time = time.time()
		dataset.shuffle()

		# training
		for itr in range(total_iterations_train):
			# update model parameters
			with chainer.using_config("train", True):
				# sample minibatch
				x_u, _, _ = dataset.sample_minibatch(args.batchsize, gpu=using_gpu)
				
				### reconstruction phase ###
				if True:
					y_onehot_u, z_u = model.encode_x_yz(x_u, apply_softmax_y=True)
					repr_u = model.encode_yz_representation(y_onehot_u, z_u)
					x_reconstruction_u = model.decode_representation_x(repr_u)
					loss_reconstruction = F.mean_squared_error(x_u, x_reconstruction_u)
#.........这里部分代码省略.........
开发者ID:musyoku,项目名称:adversarial-autoencoder,代码行数:103,代码来源:train.py


注:本文中的model.Model.to_gpu方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。