本文整理汇总了Python中model.Model.predict方法的典型用法代码示例。如果您正苦于以下问题:Python Model.predict方法的具体用法?Python Model.predict怎么用?Python Model.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类model.Model
的用法示例。
在下文中一共展示了Model.predict方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: image_train
# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import predict [as 别名]
def image_train(x_train, y_train, x_test, model_path="model.json", weight_path="weights.h5"):
netModel = Model().image_model()
#sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
#netModel.compile(loss='mean_squared_error', optimizer=sgd, metrics=["accuracy"])
netModel.compile(loss='mean_squared_error', optimizer="rmsprop", metrics=["accuracy"])
print "STARTING TRAINING"
netModel.fit(x_train, y_train, nb_epoch=1, batch_size=10, shuffle=True, verbose=1)
# model.fit(data, label, batch_size=100,nb_epoch=10,shuffle=True,verbose=1,show_accuracy=True,validation_split=0.2)
y_predict = netModel.predict(x_test, batch_size=10)
save_model(netModel, model_path, weight_path)
return y_predict
示例2: Model
# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import predict [as 别名]
from game import Game
from settings import settings
import numpy as np
import cv2
import lasagne
model = Model(settings)
with np.load('model.npz') as f:
params = [f['arr_%d' % i] for i in xrange(len(f.files))]
lasagne.layers.set_all_param_values(model.q_network, params)
model.update_target_network()
cv2.startWindowThread()
cv2.namedWindow("preview")
while True:
game = Game()
observations = np.dstack((game.observe(),) * settings['phi_length'])[0]
for step in xrange(settings['max_steps']):
predictions = model.predict(observations)
print predictions
action = model.act(observations, settings['test_epsilon'])
reward = game.act(action)
observation = game.observe()
terminal = step == settings['max_steps'] - 1
game.draw()
observations = np.hstack((np.expand_dims(observation, 2), observations[:,1:]))
示例3: main
# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import predict [as 别名]
def main(args):
if args.gpu >= 0:
cuda.check_cuda_available()
xp = cuda.cupy if args.gpu >= 0 else np
model_id = build_model_id(args)
model_path = build_model_path(args, model_id)
setup_model_dir(args, model_path)
sys.stdout, sys.stderr = setup_logging(args)
x_train, y_train = load_model_data(args.train_file,
args.data_name, args.target_name,
n=args.n_train)
x_validation, y_validation = load_model_data(
args.validation_file,
args.data_name, args.target_name,
n=args.n_validation)
rng = np.random.RandomState(args.seed)
N = len(x_train)
N_validation = len(x_validation)
n_classes = max(np.unique(y_train)) + 1
json_cfg = load_model_json(args, x_train, n_classes)
print('args.model_dir', args.model_dir)
sys.path.append(args.model_dir)
from model import Model
model_cfg = ModelConfig(**json_cfg)
model = Model(model_cfg)
setattr(model, 'stop_training', False)
if args.gpu >= 0:
cuda.get_device(args.gpu).use()
model.to_gpu()
best_accuracy = 0.
best_epoch = 0
def keep_training(epoch, best_epoch):
if model_cfg.n_epochs is not None and epoch > model_cfg.n_epochs:
return False
if epoch > 1 and epoch - best_epoch > model_cfg.patience:
return False
return True
epoch = 1
while True:
if not keep_training(epoch, best_epoch):
break
if args.shuffle:
perm = np.random.permutation(N)
else:
perm = np.arange(N)
sum_accuracy = 0
sum_loss = 0
pbar = progressbar.ProgressBar(term_width=40,
widgets=[' ', progressbar.Percentage(),
' ', progressbar.ETA()],
maxval=N).start()
for j, i in enumerate(six.moves.range(0, N, model_cfg.batch_size)):
pbar.update(j+1)
x_batch = xp.asarray(x_train[perm[i:i + model_cfg.batch_size]].flatten())
y_batch = xp.asarray(y_train[perm[i:i + model_cfg.batch_size]])
pred, loss, acc = model.fit(x_batch, y_batch)
sum_loss += float(loss.data) * len(y_batch)
sum_accuracy += float(acc.data) * len(y_batch)
pbar.finish()
print('train epoch={}, mean loss={}, accuracy={}'.format(
epoch, sum_loss / N, sum_accuracy / N))
# Validation set evaluation
sum_accuracy = 0
sum_loss = 0
pbar = progressbar.ProgressBar(term_width=40,
widgets=[' ', progressbar.Percentage(),
' ', progressbar.ETA()],
maxval=N_validation).start()
for i in six.moves.range(0, N_validation, model_cfg.batch_size):
pbar.update(i+1)
x_batch = xp.asarray(x_validation[i:i + model_cfg.batch_size].flatten())
y_batch = xp.asarray(y_validation[i:i + model_cfg.batch_size])
pred, loss, acc = model.predict(x_batch, target=y_batch)
sum_loss += float(loss.data) * len(y_batch)
sum_accuracy += float(acc.data) * len(y_batch)
pbar.finish()
validation_accuracy = sum_accuracy / N_validation
validation_loss = sum_loss / N_validation
if validation_accuracy > best_accuracy:
#.........这里部分代码省略.........