当前位置: 首页>>代码示例>>Python>>正文


Python Model.load方法代码示例

本文整理汇总了Python中model.Model.load方法的典型用法代码示例。如果您正苦于以下问题:Python Model.load方法的具体用法?Python Model.load怎么用?Python Model.load使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model.Model的用法示例。


在下文中一共展示了Model.load方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: load

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
def load(filename):
    dir_path = os.path.dirname(os.path.realpath(__file__))
    # print dir_path
    path = os.path.join(dir_path, '..', 'testdata', filename)
    model = Model()
    model.load(path)
    return model
开发者ID:alexandre-solovyov,项目名称:lang,代码行数:9,代码来源:test_model.py

示例2: test_save_and_load

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
    def test_save_and_load(self):
        model_dir = '../testdata/lda_model'
        self.model.save(model_dir)
        self.assertTrue(os.path.exists(model_dir))

        new_model = Model(20)
        new_model.load(model_dir)

        self.assertEqual(new_model.num_topics, self.model.num_topics)
        self.assertEqual(len(new_model.word_topic_hist),
                len(self.model.word_topic_hist))

        for word, new_sparse_topic_hist in new_model.word_topic_hist.iteritems():
            self.assertTrue(word in self.model.word_topic_hist)
            sparse_topic_hist = self.model.word_topic_hist[word]
            self.assertEqual(new_sparse_topic_hist.size(),
                    sparse_topic_hist.size())

            for j in xrange(new_sparse_topic_hist.size()):
                self.assertEqual(new_sparse_topic_hist.non_zeros[j].topic,
                        sparse_topic_hist.non_zeros[j].topic)
                self.assertEqual(new_sparse_topic_hist.non_zeros[j].count,
                        sparse_topic_hist.non_zeros[j].count)

        self.assertEqual(new_model.hyper_params.topic_prior,
                self.model.hyper_params.topic_prior)
        self.assertEqual(new_model.hyper_params.word_prior,
                self.model.hyper_params.word_prior)
开发者ID:Ambier,项目名称:python-sparselda,代码行数:30,代码来源:model_test.py

示例3: Test

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
def Test():
  import time
  import pyGuiWrapper as gui
  global model
  model = Model()
  model.load("testModel.xml")

  gui.go(lambda parent,menu,tool,status,m=model: Panel(parent,menu,tool,status, m))
开发者ID:OpenClovis,项目名称:SAFplus-Availability-Scalability-Platform,代码行数:10,代码来源:pyGuiWrapperModel.py

示例4: sort_all

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
def sort_all(lang):
    model_dir = os.path.join('progress', lang)
    model = Model()

    ff = model.all_files( model_dir )

    fname = ff[2]
    p = fname.split('.')
    fname1 = p[0] + '_s' + '.' + p[1]
    print fname
    print fname1
    model.load(fname)
    model.short_ignore = ['une', 'un']
    model.sort()
    model.save(fname1)
开发者ID:alexandre-solovyov,项目名称:lang,代码行数:17,代码来源:sort.py

示例5: loadFromCheckpoint

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
 def loadFromCheckpoint(savedModelDir):
   """ Load saved model.
   @param savedModelDir (string)
          Directory of where the experiment is to be or was saved
   @returns (nupic.frameworks.opf.model.Model) The loaded model instance.
   """
   return Model.load(savedModelDir)
开发者ID:AI-Cdrone,项目名称:nupic,代码行数:9,代码来源:modelfactory.py

示例6: process

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
def process():
	data = request.form['input']
	data = nltk.sent_tokenize(data)
	data = map(nltk.word_tokenize, data)

	properties = request.form['model']
	properties = json.loads(properties)

	model = Model.load(os.path.join(models_directory, properties["name"], "model"))
	labels = model.predict(data)
	output = None


	if properties["type"] == "svm":
		output = labels[libml.SVM]
	elif properties["type"] == "crf":
		output = labels[libml.CRF]
	elif properties["type"] == "lin":
		output = labels[libml.LIN]

	output = sum(output, [])
	data = sum(data, [])
	output = zip(data, output)

	return render_template("result.html", input = request.form["input"], model = properties["name"] + " - " + properties["type"].upper(), output = output)
开发者ID:tnaumann,项目名称:ConceptExtraction,代码行数:27,代码来源:app.py

示例7: plot_clusters

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
def plot_clusters():
	dataset_train, dataset_test = chainer.datasets.get_mnist()
	images_train, labels_train = dataset_train._datasets
	images_test, labels_test = dataset_test._datasets
	dataset_indices = np.arange(0, len(images_test))
	np.random.shuffle(dataset_indices)

	model = Model()
	assert model.load("model.hdf5")

	# normalize
	images_train = (images_train - 0.5) * 2
	images_test = (images_test - 0.5) * 2

	num_clusters = model.ndim_y
	num_plots_per_cluster = 11
	image_width = 28
	image_height = 28
	ndim_x = image_width * image_height
	pylab.gray()

	with chainer.no_backprop_mode() and chainer.using_config("train", False):
		# plot cluster head
		head_y = np.identity(model.ndim_y, dtype=np.float32)
		zero_z = np.zeros((model.ndim_y, model.ndim_z), dtype=np.float32)
		head_x = model.decode_yz_x(head_y, zero_z).data
		head_x = (head_x + 1.0) / 2.0
		for n in range(num_clusters):
			pylab.subplot(num_clusters, num_plots_per_cluster + 2, n * (num_plots_per_cluster + 2) + 1)
			pylab.imshow(head_x[n].reshape((image_width, image_height)), interpolation="none")
			pylab.axis("off")

		# plot elements in cluster
		counts = [0 for i in range(num_clusters)]
		indices = np.arange(len(images_test))
		np.random.shuffle(indices)
		batchsize = 500

		i = 0
		x_batch = np.zeros((batchsize, ndim_x), dtype=np.float32)
		for n in range(len(images_test) // batchsize):
			for b in range(batchsize):
				x_batch[b] = images_test[indices[i]]
				i += 1
			y_batch = model.encode_x_yz(x_batch)[0].data
			labels = np.argmax(y_batch, axis=1)
			for m in range(labels.size):
				cluster = int(labels[m])
				counts[cluster] += 1
				if counts[cluster] <= num_plots_per_cluster:
					x = (x_batch[m] + 1.0) / 2.0
					pylab.subplot(num_clusters, num_plots_per_cluster + 2, cluster * (num_plots_per_cluster + 2) + 2 + counts[cluster])
					pylab.imshow(x.reshape((image_width, image_height)), interpolation="none")
					pylab.axis("off")

		fig = pylab.gcf()
		fig.set_size_inches(num_plots_per_cluster, num_clusters)
		pylab.savefig("clusters.png")
开发者ID:musyoku,项目名称:adversarial-autoencoder,代码行数:60,代码来源:visualize.py

示例8: loadFromCheckpoint

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
 def loadFromCheckpoint(savedModelDir, newSerialization=False):
   """ Load saved model.
   @param savedModelDir (string)
          Directory of where the experiment is to be or was saved
   @returns (nupic.frameworks.opf.model.Model) The loaded model instance.
   """
   if newSerialization:
     return CLAModel.readFromCheckpoint(savedModelDir)
   else:
     return Model.load(savedModelDir)
开发者ID:runt18,项目名称:nupic,代码行数:12,代码来源:modelfactory.py

示例9: test_load

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
 def test_load(self):
     filename = 'test3.lang'
     dir_path = os.path.dirname(os.path.realpath(__file__))
     path = os.path.join(dir_path, '..', 'testdata', filename)
     
     m = Model()
     self.assertEqual(m.load(path), True)
     
     self.assertEqual(m.forms.forms('parler', 'PrInd'), ['parle', 'parles', 'parle', 'parlons', 'parlez', 'parlent'])
     self.assertEqual(m.forms.init_forms('parle'), ['parler'])
开发者ID:alexandre-solovyov,项目名称:lang,代码行数:12,代码来源:test_grammar.py

示例10: predict

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
def predict(files, model_path, output_dir, format):

    # Must specify output format
    if format not in Note.supportedFormats():
        print >>sys.stderr, '\n\tError: Must specify output format'
        print >>sys.stderr,   '\tAvailable formats: ', ' | '.join(Note.supportedFormats())
        print >>sys.stderr, ''
        exit(1)



    # Load model
    model = Model.load(model_path)


    # Tell user if not predicting
    if not files:
        print >>sys.stderr, "\n\tNote: You did not supply any input files\n"
        exit()


    # For each file, predict concept labels
    n = len(files)
    for i,txt in enumerate(sorted(files)):

        # Read the data into a Note object
        note = Note(format)
        note.read(txt)


        print '-' * 30
        print '\n\t%d of %d' % (i+1,n)
        print '\t', txt, '\n'


        # Predict concept labels
        labels = model.predict(note)

        # Get predictions in proper format
        extension = note.getExtension()
        output = note.write(labels)

        #print output

        # Output file
        fname = os.path.splitext(os.path.basename(txt))[0] + '.' + extension
        out_path = os.path.join(output_dir, fname)

        # Output the concept predictions
        print '\n\nwriting to: ', out_path
        with open(out_path, 'w') as f:
            print >>f, output
        print
开发者ID:aussina,项目名称:CliNER,代码行数:55,代码来源:predict.py

示例11: loadFromCheckpoint

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
  def loadFromCheckpoint(savedModelDir, newSerialization=False):
    """ Load saved model.

    :param savedModelDir: (string)
           Directory of where the experiment is to be or was saved
    :returns: (:class:`nupic.frameworks.opf.model.Model`) The loaded model
              instance.
    """
    if newSerialization:
      return HTMPredictionModel.readFromCheckpoint(savedModelDir)
    else:
      return Model.load(savedModelDir)
开发者ID:Erichy94,项目名称:nupic,代码行数:14,代码来源:model_factory.py

示例12: plot_cluster_head

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
def plot_cluster_head():
	parser = argparse.ArgumentParser()
	parser.add_argument("--model", "-m", type=str, default="model.hdf5")
	args = parser.parse_args()

	model = Model()
	assert model.load(args.model)

	all_y = np.identity(10, dtype=np.float32)
	head = model.cluster_head(all_y).data
	labels = [i for i in range(10)]
	plot.scatter_labeled_z(head, labels, "cluster_head.png")
开发者ID:musyoku,项目名称:adversarial-autoencoder,代码行数:14,代码来源:visualize.py

示例13: __init__

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
 def __init__(self,model_file_name,fName=None,gp=None,beam_size=40,test_time=False):
     self.test_time=test_time
     self.features=Features()
     self.beam_size=beam_size
     self.model=Model.load(model_file_name)
     if gp:
         self.perceptron=gp
         return
     elif fName is not None:
         self.perceptron_state=PerceptronSharedState.load(fName,retrainable=True)
     else:
         self.perceptron_state=PerceptronSharedState(5000000)
     self.perceptron=GPerceptron.from_shared_state(self.perceptron_state)
开发者ID:jmnybl,项目名称:Turku-Dependency-Parser,代码行数:15,代码来源:tparser.py

示例14: plot_mapped_cluster_head

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
def plot_mapped_cluster_head():
	parser = argparse.ArgumentParser()
	parser.add_argument("--model", "-m", type=str, default="model.hdf5")
	args = parser.parse_args()

	model = Model()
	assert model.load(args.model)

	identity = np.identity(model.ndim_y, dtype=np.float32)
	mapped_head = model.linear_transformation(identity)

	labels = [i for i in range(10)]
	plot.scatter_labeled_z(mapped_head.data, labels, "cluster_head.png")
开发者ID:musyoku,项目名称:adversarial-autoencoder,代码行数:15,代码来源:visualize.py

示例15: plot_analogy

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import load [as 别名]
def plot_analogy():
	dataset_train, dataset_test = chainer.datasets.get_mnist()
	images_train, labels_train = dataset_train._datasets
	images_test, labels_test = dataset_test._datasets
	dataset_indices = np.arange(0, len(images_test))
	np.random.shuffle(dataset_indices)

	model = Model()
	assert model.load("model.hdf5")

	# normalize
	images_train = (images_train - 0.5) * 2
	images_test = (images_test - 0.5) * 2

	num_analogies = 10
	pylab.gray()

	batch_indices = dataset_indices[:num_analogies]
	x_batch = images_test[batch_indices]
	y_batch = labels_test[batch_indices]
	y_onehot_batch = onehot(y_batch)

	with chainer.no_backprop_mode() and chainer.using_config("train", False):
		z_batch = model.encode_x_yz(x_batch)[1].data

		# plot original image on the left
		x_batch = (x_batch + 1.0) / 2.0
		for m in range(num_analogies):
			pylab.subplot(num_analogies, 10 + 2, m * 12 + 1)
			pylab.imshow(x_batch[m].reshape((28, 28)), interpolation="none")
			pylab.axis("off")

		all_y = np.identity(10, dtype=np.float32)
		for m in range(num_analogies):
			# copy z_batch as many as the number of classes
			fixed_z = np.repeat(z_batch[m].reshape(1, -1), 10, axis=0)
			representation = model.encode_yz_representation(all_y, fixed_z)
			gen_x = model.decode_representation_x(representation).data
			gen_x = (gen_x + 1.0) / 2.0
			# plot images generated from each label
			for n in range(10):
				pylab.subplot(num_analogies, 10 + 2, m * 12 + 3 + n)
				pylab.imshow(gen_x[n].reshape((28, 28)), interpolation="none")
				pylab.axis("off")

	fig = pylab.gcf()
	fig.set_size_inches(num_analogies, 10)
	pylab.savefig("analogy.png")
开发者ID:musyoku,项目名称:adversarial-autoencoder,代码行数:50,代码来源:visualize.py


注:本文中的model.Model.load方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。