当前位置: 首页>>代码示例>>Python>>正文


Python Model.fit方法代码示例

本文整理汇总了Python中model.Model.fit方法的典型用法代码示例。如果您正苦于以下问题:Python Model.fit方法的具体用法?Python Model.fit怎么用?Python Model.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在model.Model的用法示例。


在下文中一共展示了Model.fit方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run_full

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import fit [as 别名]
def run_full():
    splits = get_crossval_data()
    
    X = splits[0][0] + splits[1][0]
    Y1 = splits[0][1] + splits[1][1]
    Y2 = splits[0][2] + splits[1][2]
    test_data = get_test_data()
    
    remove_features_rfc = [19,20,34]
    remove_features_lr = [19,20,21,22,23,24,25,26,29,30,31,32,34]
    
    not_useful_rfc = [8,11,22,24,28,33,30,31,32]#9,21#30,31,32
    remove_features_rfc.extend(not_useful_rfc)
    not_useful_lr = [3,4,9,11,14,15,16,17,27,28,30,31,32]
    remove_features_lr.extend(not_useful_lr)
        
    z = [True] * len(X[0])
    w = [True] * len(X[0])
    
    for i in remove_features_rfc:
        z[i] = False
    for i in remove_features_lr:
        w[i] = False
    
    C = 0.03
    #C = 0.3
    m1 = Model(compress=z, has_none=w, C=C)
    m1.fit(X, Y1)
    final = False
    results = run_model(m1, None, test_data, is_final=final)
    if not final:
        print evaluate_test_results(results)
开发者ID:HamedMP,项目名称:kaggle-event-recommendation,代码行数:34,代码来源:main.py

示例2: run_full

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import fit [as 别名]
def run_full():
	train = get_data('tmp/train.csv')
	test = get_data('tmp/test.csv')    	
    
	w = [True] * len(train['X'][0])
	C = 0.03
    #C = 0.3
	m1 = Model(has_none=w, C=C)
	m1.fit(train['X'], train['Y'])
	results = m1.test(test['X'])	
	
	error = 0
	tp = 0
	fp = 0
	tn = 0
	fn = 0

	for i in range(len(results)):
		if results[i] != test['Y'][i]:			
			error += 1
			if results[i] == 1:
				fp += 1
			else:
				fn += 1
		elif results[i] == 1:
			tp += 1
		else:
			tn += 1

	print('tp = {}, fp = {}, tn = {}, fn = {}'.format(tp, fp, tn, fn))
	print('error rate: {}'.format(float(error) / len(results)))
	print('precision: {}'.format(float(tp) / (tp + fp + 1)))
	print('recall: {}'.format(float(tp) / (tp + fn + 1)))
	print('specificity: {}'.format(float(tn) / (tn + fp + 1)))
开发者ID:nguyenluongdien,项目名称:event_recommendation,代码行数:36,代码来源:main50.py

示例3: analyze

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import fit [as 别名]
def analyze(judged_class = 0):
    train = get_data('tmp/train.csv')
    test = get_data('tmp/test.csv')    	

    C = 0.03
    #C = 0.3
    m1 = Model(judged_class = judged_class, C = C)
    m1.fit(train['X'], train['Y'])
    m1.analyze_threshold(test['X'], test['Y'])
开发者ID:nguyenluongdien,项目名称:event_recommendation,代码行数:11,代码来源:main.py

示例4: image_train

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import fit [as 别名]
def image_train(x_train, y_train, x_test, model_path="model.json", weight_path="weights.h5"):
    netModel = Model().image_model()
    #sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
    #netModel.compile(loss='mean_squared_error', optimizer=sgd, metrics=["accuracy"])

    netModel.compile(loss='mean_squared_error', optimizer="rmsprop", metrics=["accuracy"])

    print "STARTING TRAINING"
    netModel.fit(x_train, y_train, nb_epoch=1, batch_size=10, shuffle=True, verbose=1)
    # model.fit(data, label, batch_size=100,nb_epoch=10,shuffle=True,verbose=1,show_accuracy=True,validation_split=0.2)
    y_predict = netModel.predict(x_test, batch_size=10)
    save_model(netModel, model_path, weight_path)
    return y_predict
开发者ID:hellodmp,项目名称:ImageQC_keras,代码行数:15,代码来源:test.py

示例5: run_compare

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import fit [as 别名]
def run_compare():
	train = get_data('tmp/train.csv')
	test = get_data('tmp/test.csv')
    
	C = 0.03
	#C = 0.3
	m1 = Model(C = C)
	m1.fit(train['X'], train['Y'])

	for judged_class in range(2):
		m1.judged_class = judged_class
		if judged_class == 0:
			m1.threshold = 0.25
		else:
			m1.threshold = 0.69

		results = m1.test(test['X'])	
		
		error = 0
		tp = 0
		fp = 0
		tn = 0
		fn = 0

		for i in range(len(results)):
			if results[i] != test['Y'][i]:			
				error += 1
				if results[i] == 1:
					fp += 1
				else:
					fn += 1
			elif results[i] == 1:
				tp += 1
			else:
				tn += 1

		err = float(error) / len(results)
		precision = float(tp) / (tp + fp + 1)
		recall = float(tp) / (tp + fn + 1)
		spec = float(tn) / (tn + fp + 1)

		print('Judged class: {}'.format(judged_class))
		print('tp = {}, fp = {}, tn = {}, fn = {}'.format(tp, fp, tn, fn))
		print('error rate: {}'.format(err))
		print('precision: {}'.format(precision))
		print('recall: {}'.format(recall))
		print('specificity: {}'.format(spec))
		'''
开发者ID:nguyenluongdien,项目名称:event_recommendation,代码行数:50,代码来源:main.py

示例6: run_statistics

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import fit [as 别名]
def run_statistics(judged_class = 0, threshold = 0.6):
    train = get_data('tmp/train.csv')
    test = get_data('tmp/test.csv')   
    global out_stats 	
    
    C = 0.03
    #C = 0.3
    m1 = Model(judged_class = judged_class, threshold = threshold, C = C)
    m1.fit(train['X'], train['Y'])

    for w0 in frange(0.1, 0.9, 0.1):
        for w1 in frange(0.1, 0.9, 0.1):
            m1.w0 = w0
            m1.w1 = w1
            print('({0}, {1}) passed'.format(w0, w1))
            results = m1.test(test['X'])	
            
            error = 0
            tp = 0
            fp = 0
            tn = 0
            fn = 0

            for i in range(len(results)):
                if results[i] != test['Y'][i]:			
                    error += 1
                    if results[i] == 1:
                        fp += 1
                    else:
                        fn += 1
                elif results[i] == 1:
                    tp += 1
                else:
                    tn += 1

            err = float(error) / len(results)
            precision = float(tp) / (tp + fp + 1)
            recall = float(tp) / (tp + fn + 1)
            specificity = float(tn) / (tn + fp + 1)           

            out_stats.write('({0}, {1})\t{2}\t{3}\t{4}\t{5}\n'.format(w0, w1, err, precision, recall, specificity))
开发者ID:nguyenluongdien,项目名称:event_recommendation,代码行数:43,代码来源:main.py

示例7: __init__

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import fit [as 别名]
class Experiment:
    """
    Machine Learning Experiment Interface
    """

    def __init__(self):
        self.model = Model()
        self.description = "awesome-experiment"
        pass

    def set_description(self, description):
        """
        :type description: str
        """
        self.description = description

    def get_data(self):
        raise NotImplementedError()

    def set_model(self, model):
        """
        :type model: Model
        """
        self.model = model

    def run(self):
        print " ====================================== "
        print "|    Data Gathering & Preparation      |"
        print " ====================================== "
        self.get_data()
        print " ====================================== "
        print "|            Model Building            |"
        print " ====================================== "
        self.model.fit()
        print " ====================================== "
        print "|            Model Evaluate            |"
        print " ====================================== "
        self.model.evaluate()
开发者ID:rain1024,项目名称:kaggle-drawbridge,代码行数:40,代码来源:experiment.py

示例8: run_crossval

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import fit [as 别名]
def run_crossval():
    splits = get_crossval_data()
    
    results = []
    for i in range(2):
        s = splits[i]
        other_s = splits[1 - i]
        
        z = [True] * len(s[0][0])
        w = [True] * len(s[0][0])
        remove_features_rfc = [19,20]
        remove_features_lr = [19,20,21,22,23,24,25,26,29,30,31,32]
        
        for i in remove_features_rfc:
            z[i] = False
        for i in remove_features_lr:
            w[i] = False
        
        m1 = Model(compress=z, has_none=w)
        m1.fit(s[0], s[1])
        
        X = other_s[0]
        predictions = m1.test(X)
        keys = other_s[4]
        pred_dict = {}
        for j in xrange(len(keys)):
            uid, eid = keys[j]
            if uid not in pred_dict:
                pred_dict[uid] = []
            pred_dict[uid].append((eid, predictions[j]))
            
        for uid, l in pred_dict.iteritems():
            l.sort(key=lambda x: -x[1])
            l = [e[0] for e in l]
            results.append(apk(other_s[3][uid], l))
        
    print sum(results) / len(results)
开发者ID:HamedMP,项目名称:kaggle-event-recommendation,代码行数:39,代码来源:main.py

示例9: Model

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import fit [as 别名]
seq, targets, tokens = c.encode(n_seq, n_steps, tokens, fs)
_, __, n_in = seq.shape

t0 = time.time()

#Creates the model to run the RNN.
params = {
		'n_in': n_in,
		'n_hid': n_hid,
		'n_out': n_out,
		'n_epochs': 250
	}

model = Model(logger, params)

#Trains the RNN and runs the softmax signal.
while seq is not None and targets is not None:
	model.fit(seq, targets, validation_freq=1000)

	seqs = xrange(n_seq)
	for seq_num in seqs:
		tsm = time.time()
		guess = model.predict_probability(seq[seq_num])

		tsm = time.time() - tsm
		softmax_time += tsm
		logger.info("Softmax elapsed time: %f" % (tsm))

	seq, targets, tokens = c.encode(n_seq, n_steps, tokens, fs)

logger.info("Total elapsed time: {} and softmax time: {} ".format(time.time() - t0, softmax_time))
开发者ID:cngo-github,项目名称:se-deep_learning,代码行数:33,代码来源:main.py

示例10: main

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import fit [as 别名]
def main(args):
    if args.gpu >= 0:
        cuda.check_cuda_available()
    xp = cuda.cupy if args.gpu >= 0 else np

    model_id = build_model_id(args)
    model_path = build_model_path(args, model_id)
    setup_model_dir(args, model_path)
    sys.stdout, sys.stderr = setup_logging(args)

    x_train, y_train = load_model_data(args.train_file,
            args.data_name, args.target_name,
            n=args.n_train)
    x_validation, y_validation = load_model_data(
            args.validation_file,
            args.data_name, args.target_name,
            n=args.n_validation)

    rng = np.random.RandomState(args.seed)

    N = len(x_train)
    N_validation = len(x_validation)

    n_classes = max(np.unique(y_train)) + 1
    json_cfg = load_model_json(args, x_train, n_classes)

    print('args.model_dir', args.model_dir)
    sys.path.append(args.model_dir)
    from model import Model
    model_cfg = ModelConfig(**json_cfg)
    model = Model(model_cfg)
    setattr(model, 'stop_training', False)
    
    if args.gpu >= 0:
        cuda.get_device(args.gpu).use()
        model.to_gpu()
    
    best_accuracy = 0.
    best_epoch = 0
    
    def keep_training(epoch, best_epoch):
        if model_cfg.n_epochs is not None and epoch > model_cfg.n_epochs:
                return False
        if epoch > 1 and epoch - best_epoch > model_cfg.patience:
            return False
        return True
    
    epoch = 1
    
    while True:
        if not keep_training(epoch, best_epoch):
            break
    
        if args.shuffle:
            perm = np.random.permutation(N)
        else:
            perm = np.arange(N)
    
        sum_accuracy = 0
        sum_loss = 0

        pbar = progressbar.ProgressBar(term_width=40,
            widgets=[' ', progressbar.Percentage(),
            ' ', progressbar.ETA()],
            maxval=N).start()

        for j, i in enumerate(six.moves.range(0, N, model_cfg.batch_size)):
            pbar.update(j+1)
            x_batch = xp.asarray(x_train[perm[i:i + model_cfg.batch_size]].flatten())
            y_batch = xp.asarray(y_train[perm[i:i + model_cfg.batch_size]])
            pred, loss, acc = model.fit(x_batch, y_batch)
            sum_loss += float(loss.data) * len(y_batch)
            sum_accuracy += float(acc.data) * len(y_batch)

        pbar.finish()
        print('train epoch={}, mean loss={}, accuracy={}'.format(
            epoch, sum_loss / N, sum_accuracy / N))
    
        # Validation set evaluation
        sum_accuracy = 0
        sum_loss = 0

        pbar = progressbar.ProgressBar(term_width=40,
            widgets=[' ', progressbar.Percentage(),
            ' ', progressbar.ETA()],
            maxval=N_validation).start()

        for i in six.moves.range(0, N_validation, model_cfg.batch_size):
            pbar.update(i+1)
            x_batch = xp.asarray(x_validation[i:i + model_cfg.batch_size].flatten())
            y_batch = xp.asarray(y_validation[i:i + model_cfg.batch_size])
            pred, loss, acc = model.predict(x_batch, target=y_batch)
            sum_loss += float(loss.data) * len(y_batch)
            sum_accuracy += float(acc.data) * len(y_batch)

        pbar.finish()
        validation_accuracy = sum_accuracy / N_validation
        validation_loss = sum_loss / N_validation
    
        if validation_accuracy > best_accuracy:
#.........这里部分代码省略.........
开发者ID:Libardo1,项目名称:modeling,代码行数:103,代码来源:train_chainer.py

示例11: week

# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import fit [as 别名]
from config import *
from sklearn.metrics import confusion_matrix

def week():
    X=[]
    for i in range(7):
        for t in range(24):
            d = [0.0]*NUM_FEATURES
            d[t]=1.0
            d[NUM_INTERVALS+i]=1.0
            # d[NUM_INTERVALS+NUM_DAY_OF_WEEK+loc]=1.0
            X.append(d)
    return np.array(X)

loc = pickle.load(open('./data/top_loc.dat','rb'))
loc = [loc[0]]
train_X, train_y, valid_X, valid_y, test_X, test_y = getTrainTestData()
print('train: {} valid: {}, test: {}'.format(len(train_X), len(valid_X), len(test_X)))
m = Model()
m.fit(train_X, train_y, valid_X, valid_y)
loss, acc = m.eva(test_X, test_y)
print('test: {}'.format(loss))

'''
X_week = week()
Y_week = m.predict(X_week)
visual_week = [Y_week[i] for i in range(len(Y_week))]
plt.plot(visual_week,'-')
plt.show()
'''
开发者ID:Jerryzcn,项目名称:rnn_hack,代码行数:32,代码来源:train.py


注:本文中的model.Model.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。