本文整理汇总了Python中model.Model.evaluate方法的典型用法代码示例。如果您正苦于以下问题:Python Model.evaluate方法的具体用法?Python Model.evaluate怎么用?Python Model.evaluate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类model.Model
的用法示例。
在下文中一共展示了Model.evaluate方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import evaluate [as 别名]
class Experiment:
"""
Machine Learning Experiment Interface
"""
def __init__(self):
self.model = Model()
self.description = "awesome-experiment"
pass
def set_description(self, description):
"""
:type description: str
"""
self.description = description
def get_data(self):
raise NotImplementedError()
def set_model(self, model):
"""
:type model: Model
"""
self.model = model
def run(self):
print " ====================================== "
print "| Data Gathering & Preparation |"
print " ====================================== "
self.get_data()
print " ====================================== "
print "| Model Building |"
print " ====================================== "
self.model.fit()
print " ====================================== "
print "| Model Evaluate |"
print " ====================================== "
self.model.evaluate()
示例2: test_evaulate_returns_correct_shapes_for_trivial_cases
# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import evaluate [as 别名]
def test_evaulate_returns_correct_shapes_for_trivial_cases(self):
model = Model([np.random.rand(1,2), np.random.rand(1,2)])
result = model.evaluate(np.random.rand(1,1))
self.assertEqual(result.shape, (1,1))
示例3: test_evaluate_returns_correct_output_shape
# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import evaluate [as 别名]
def test_evaluate_returns_correct_output_shape(self):
model = Model([np.random.rand(10, 5), np.random.rand(10, 11), np.random.rand(5, 11), np.random.rand(3, 6)])
result = model.evaluate([[r*5+c for c in range(4)] for r in range(100)])
actual = result.shape
expected = (100, 3)
self.assertEqual(actual, expected)
示例4: test_evaluation_should_throw_for_invalid_input_dimensions
# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import evaluate [as 别名]
def test_evaluation_should_throw_for_invalid_input_dimensions(self):
model = Model([np.random.rand(10, 5), np.random.rand(10, 11), np.random.rand(5, 11), np.random.rand(3, 6)])
with self.assertRaises(ValueError):
model.evaluate([x for x in range(2)])
示例5: test_model_should_also_take_multiple_rows
# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import evaluate [as 别名]
def test_model_should_also_take_multiple_rows(self):
model = Model([np.random.rand(10, 5), np.random.rand(10, 11), np.random.rand(5, 11), np.random.rand(3, 6)])
model.evaluate([[x for x in range(4)], [x**2 for x in range(4)]])
示例6: test_model_should_take_a_single_input_row
# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import evaluate [as 别名]
def test_model_should_take_a_single_input_row(self):
model = Model([np.random.rand(10, 5), np.random.rand(10, 11), np.random.rand(5, 11), np.random.rand(3, 6)])
model.evaluate([x for x in range(4)])
示例7: print
# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import evaluate [as 别名]
if loss < best:
print('New best validation loss! Was: {}, Now: {}'.format(best, loss))
best = loss
wait = 0
else:
wait += 1
print('Validation loss did not improve for {}/{} epochs.'.format(wait, patience))
if wait == 2:
print('Stopping early. Validation loss did not improve for {}/{} epochs.'.format(wait, patience))
break
model.summary_writer.close()
scores_total.append(score)
print('Begin evaluation...')
predictions = model.evaluate(X_test)
predictions_total.append(predictions)
num_folds += 1
score_geom = calc_geom(scores_total, num_folds)
predictions_geom = calc_geom_arr(predictions_total, num_folds)
print('Writing submission for {} folds, score: {}...'.format(num_folds, score_geom))
submission_dest = os.path.join(SUMMARY_PATH, 'submission_{}_{}.csv'.format(int(time.time()), score_geom))
write_submission(predictions_geom, X_test_ids, submission_dest)
print('Done.')
示例8: get_trimmed_glove_vectors
# 需要导入模块: from model import Model [as 别名]
# 或者: from model.Model import evaluate [as 别名]
vocab_labels, lowercase=False, label_vocab=True)
# get pre trained embeddings
embeddings = get_trimmed_glove_vectors(config.trimmed_filename)
test_filepath, _ = write_clear_data_pd(
config.test_filename, config.DEFAULT, domain=config.domain)
test = Dataset(test_filepath, processing_word, processing_label,
config.max_iter)
# build model
model = Model(
config, embeddings, ntags=len(vocab_labels), nchars=len(vocab_chars))
# build graph
model.build_graph()
model.evaluate(test, vocab_labels)
# processing_word = get_processing_word(
# vocab_words, vocab_chars, lowercase=True, chars=config.chars)
# tags = load_vocab(config.labels_filename)
# idx_to_tag = {idx: tag for tag, idx in vocab_labels.items()}
# saver = tf.train.Saver()
# with tf.Session() as sess:
# saver.restore(sess, self.config.model_output)
# import tensorflow as tf
# config = Config()
# tags = load_vocab(config.labels_filename)
# # saver = tf.train.Saver()
# saver = tf.train.import_meta_graph(config.model_output + "best.meta")