本文整理汇总了C++中Mat4::Multiply方法的典型用法代码示例。如果您正苦于以下问题:C++ Mat4::Multiply方法的具体用法?C++ Mat4::Multiply怎么用?C++ Mat4::Multiply使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Mat4
的用法示例。
在下文中一共展示了Mat4::Multiply方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: up
void GraphicsGL2::SetupScene(
float fov, float new_view_distance,
const Vec3 cam_position,
const Quat & cam_rotation,
const Vec3 & dynamic_reflection_sample_pos)
{
// setup the default camera from the passed-in parameters
{
GraphicsCamera & cam = cameras["default"];
cam.fov = fov;
cam.pos = cam_position;
cam.orient = cam_rotation;
cam.view_distance = new_view_distance;
cam.w = w;
cam.h = h;
}
// create a camera for the skybox with a long view distance
{
GraphicsCamera & cam = cameras["skybox"];
cam = cameras["default"];
cam.view_distance = 10000;
cam.pos = Vec3(0);
}
// create a camera for the dynamic reflections
{
GraphicsCamera & cam = cameras["dynamic_reflection"];
cam.pos = dynamic_reflection_sample_pos;
cam.fov = 90; // this gets automatically overridden with the correct fov (which is 90 anyway)
cam.orient.LoadIdentity(); // this gets automatically rotated for each cube side
cam.view_distance = 100;
cam.w = 1; // this gets automatically overridden with the cubemap dimensions
cam.h = 1; // this gets automatically overridden with the cubemap dimensions
}
// create a camera for the dynamic reflection skybox
{
GraphicsCamera & cam = cameras["dynamic_reflection_skybox"];
cam = cameras["dynamic_reflection"];
cam.view_distance = 10000;
cam.pos = Vec3(0);
}
// create an ortho camera for 2d drawing
{
GraphicsCamera & cam = cameras["2d"];
// this is the glOrtho call we want: glOrtho( 0, 1, 1, 0, -1, 1 );
cam.orthomode = true;
cam.orthomin = Vec3(0, 1, -1);
cam.orthomax = Vec3(1, 0, 1);
}
// put the default camera transform into texture3, needed by shaders only
Mat4 viewMatrix;
cam_rotation.GetMatrix4(viewMatrix);
float translate[4] = {-cam_position[0], -cam_position[1], -cam_position[2], 0};
viewMatrix.MultiplyVector4(translate);
viewMatrix.Translate(translate[0], translate[1], translate[2]);
glMatrixMode(GL_TEXTURE);
glActiveTexture(GL_TEXTURE3);
glLoadMatrixf(viewMatrix.GetArray());
// create cameras for shadow passes
if (shadows)
{
Mat4 viewMatrixInv = viewMatrix.Inverse();
// derive light rotation quaternion from light direction vector
Quat light_rotation;
Vec3 up(0, 0, 1);
float cosa = up.dot(light_direction);
if (cosa * cosa < 1.0f)
{
float a = -acosf(cosa);
Vec3 x = up.cross(light_direction).Normalize();
light_rotation.SetAxisAngle(a, x[0], x[1], x[2]);
}
std::vector <std::string> shadow_names;
shadow_names.push_back("near");
shadow_names.push_back("medium");
shadow_names.push_back("far");
for (int i = 0; i < 3; i++)
{
float shadow_radius = (1<<i)*closeshadow+(i)*20.0; //5,30,60
Vec3 shadowbox(1,1,1);
shadowbox = shadowbox * (shadow_radius*sqrt(2.0));
Vec3 shadowoffset(0,0,-1);
shadowoffset = shadowoffset * shadow_radius;
(-cam_rotation).RotateVector(shadowoffset);
shadowbox[2] += 60.0;
GraphicsCamera & cam = cameras["shadows_"+shadow_names[i]];
cam = cameras["default"];
//.........这里部分代码省略.........
示例2: up
void GraphicsGL2::SetupScene(
float fov, float new_view_distance,
const Vec3 cam_position,
const Quat & cam_rotation,
const Vec3 & dynamic_reflection_sample_pos,
std::ostream & error_output)
{
// setup the default camera from the passed-in parameters
{
GraphicsCamera & cam = cameras["default"];
cam.fov = fov;
cam.pos = cam_position;
cam.rot = cam_rotation;
cam.view_distance = new_view_distance;
cam.w = w;
cam.h = h;
}
// create a camera for the skybox with a long view distance
{
GraphicsCamera & cam = cameras["skybox"];
cam = cameras["default"];
cam.view_distance = 10000;
cam.pos = Vec3(0);
if (fixed_skybox)
cam.pos[2] = cam_position[2];
}
// create a camera for the dynamic reflections
{
GraphicsCamera & cam = cameras["dynamic_reflection"];
cam.pos = dynamic_reflection_sample_pos;
cam.fov = 90; // this gets automatically overridden with the correct fov (which is 90 anyway)
cam.rot.LoadIdentity(); // this gets automatically rotated for each cube side
cam.view_distance = 100;
cam.w = 1; // this gets automatically overridden with the cubemap dimensions
cam.h = 1; // this gets automatically overridden with the cubemap dimensions
}
// create a camera for the dynamic reflection skybox
{
GraphicsCamera & cam = cameras["dynamic_reflection_skybox"];
cam = cameras["dynamic_reflection"];
cam.view_distance = 10000;
cam.pos = Vec3(0);
}
// create an ortho camera for 2d drawing
{
GraphicsCamera & cam = cameras["2d"];
// this is the glOrtho call we want: glOrtho( 0, 1, 1, 0, -1, 1 );
cam.orthomode = true;
cam.orthomin = Vec3(0, 1, -1);
cam.orthomax = Vec3(1, 0, 1);
}
// create cameras for shadow passes
if (shadows)
{
Mat4 view_matrix;
cam_rotation.GetMatrix4(view_matrix);
float translate[4] = {-cam_position[0], -cam_position[1], -cam_position[2], 0};
view_matrix.MultiplyVector4(translate);
view_matrix.Translate(translate[0], translate[1], translate[2]);
Mat4 view_matrix_inv = view_matrix.Inverse();
// derive light rotation quaternion from light direction vector
Quat light_rotation;
Vec3 up(0, 0, 1);
float cosa = up.dot(light_direction);
if (cosa * cosa < 1.0f)
{
float a = -acosf(cosa);
Vec3 x = up.cross(light_direction).Normalize();
light_rotation.SetAxisAngle(a, x[0], x[1], x[2]);
}
std::vector <std::string> shadow_names;
shadow_names.push_back("near");
shadow_names.push_back("medium");
shadow_names.push_back("far");
for (int i = 0; i < 3; i++)
{
float shadow_radius = (1<<i)*closeshadow+(i)*20.0; //5,30,60
Vec3 shadowbox(1,1,1);
shadowbox = shadowbox * (shadow_radius*sqrt(2.0));
Vec3 shadowoffset(0,0,-1);
shadowoffset = shadowoffset * shadow_radius;
(-cam_rotation).RotateVector(shadowoffset);
shadowbox[2] += 60.0;
GraphicsCamera & cam = cameras["shadows_"+shadow_names[i]];
cam = cameras["default"];
cam.orthomode = true;
cam.orthomin = -shadowbox;
cam.orthomax = shadowbox;
//.........这里部分代码省略.........