本文整理匯總了C#中System.Matrix.Transpose方法的典型用法代碼示例。如果您正苦於以下問題:C# Matrix.Transpose方法的具體用法?C# Matrix.Transpose怎麽用?C# Matrix.Transpose使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Matrix
的用法示例。
在下文中一共展示了Matrix.Transpose方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Bfgs
/// <summary>
/// Computes the BFGS correction formula for inverse hessiana approximation.
/// </summary>
/// <param name="func">Function to find it the hessiana approximation.</param>
/// <param name="b">Current inverse approximation of the hessiana.</param>
/// <param name="x">Current vector of the minimization Quasi-Newton algorithm.</param>
/// <param name="x1">Next vector of the minimization Quasi-Newton algorithm.</param>
/// <returns>Returns a matrix representing the next step in inverse hessiana approximation.s</returns>
public static Matrix Bfgs(CompiledFunc func, Matrix b, Vector x, Vector x1)
{
var sk = new Matrix(x1 - x);
var yk = new Matrix(func.Differentiate(x1) - func.Differentiate(x));
var t = b.Dot(sk.Transpose()).Dot(sk).Dot(b)/sk.Dot(b).Dot(sk.Transpose())[0,0];
var t1 = yk.Transpose().Dot(yk)/yk.Dot(sk.Transpose())[0,0];
return b - t + t1;
}
示例2: Transformation
private Matrix Transformation(Matrix A, Matrix U, Matrix axt, Matrix wxt, Matrix ayt, Matrix wyt)
{
var fx_aff = axt * MatrixUtils.RankVertical(Ones(1, A.Rows), A.Transpose());
var fx_wrp = wxt * U;
var fx = fx_aff + fx_wrp; //fx=fx_aff+fx_wrp;
// fy_aff=cy(n_good+1:n_good+3)'*[ones(1,nsamp1); X'];
var fy_aff = ayt * MatrixUtils.RankVertical(Ones(1, A.Rows), A.Transpose());
var fy_wrp = wyt * U; // fy_wrp=cy(1:n_good)'*U;
var fy = fy_aff + fy_wrp; // fy=fy_aff+fy_wrp;
return MatrixUtils.RankVertical(fx, fy).Transpose();
}
示例3: Main
static void Main()
{
int[,] matrix1 = new int[,]
{
{1, 2, -3},
{2, 1, 3},
{3, 1, 2}
};
int[,] matrix2 = new int[,]
{
{4, 5, 6},
{-1, 0, 7},
{3, 2, 1}
};
Matrix<int> m1 = new Matrix<int>(matrix1);
Matrix<int> m2 = new Matrix<int>(matrix2);
Console.WriteLine(m1 + m2);
Console.WriteLine(m1 - m2);
Console.WriteLine(m1 * m2);
Console.WriteLine(m1.Transpose());
Console.WriteLine(m1 * 5);
}
示例4: Draw
public static void Draw(RenderContext11 renderContext, PositionColoredTextured[] points, int count, Matrix mat, bool triangleStrip)
{
if (VertexBuffer == null)
{
VertexBuffer = new Buffer(renderContext.Device, System.Runtime.InteropServices.Marshal.SizeOf(points[0]) * 2500, ResourceUsage.Dynamic, BindFlags.VertexBuffer, CpuAccessFlags.Write, ResourceOptionFlags.None, System.Runtime.InteropServices.Marshal.SizeOf(points[0]));
VertexBufferBinding = new VertexBufferBinding(VertexBuffer, System.Runtime.InteropServices.Marshal.SizeOf((points[0])), 0);
}
renderContext.devContext.InputAssembler.PrimitiveTopology = triangleStrip ? SharpDX.Direct3D.PrimitiveTopology.TriangleStrip : SharpDX.Direct3D.PrimitiveTopology.TriangleList;
renderContext.BlendMode = BlendMode.Alpha;
renderContext.setRasterizerState(TriangleCullMode.Off);
mat.Transpose();
WarpOutputShader.MatWVP = mat;
WarpOutputShader.Use(renderContext.devContext, false);
renderContext.SetVertexBuffer(VertexBufferBinding);
DataBox box = renderContext.devContext.MapSubresource(VertexBuffer, 0, MapMode.WriteDiscard, MapFlags.None);
Utilities.Write(box.DataPointer, points, 0, count);
renderContext.devContext.UnmapSubresource(VertexBuffer, 0);
renderContext.devContext.PixelShader.SetShaderResource(0, null);
renderContext.devContext.Draw(count, 0);
}
示例5: GradientDescent
private static Tuple<Vector<double>, double[]> GradientDescent(Matrix<double> x, Vector<double> y, Vector<double> theta, double alpha, int numberOfIterations)
{
var m = y.Count;
var jHistory = new double[numberOfIterations];
for (int i = 0; i < numberOfIterations; i++)
{
theta = theta - (alpha / m) * x.Transpose() * (x * theta - y);
}
return Tuple.Create(theta, jHistory);
}
示例6: GradientDescent
/// <summary>
/// Uses gradient descent to calculate the "theta" vector.
/// On each iteration gets calculated as per
///
/// theta = theta - (alpha/m)*(X*theta - Y)'*X
///
/// </summary>
private void GradientDescent(Input input)
{
var monitor = new CostFunctionMonitor(input);
_theta = new DenseMatrix(1, input.FeaturesCount);
var multiplier = (Settings.LearningRate / input.SamplesCount);
for (int i = 0; i < Settings.MaxIterations; i++) {
_theta -= multiplier * ((input.X * _theta.Transpose() - input.Y).Transpose() * input.X);
if (monitor.IsConverged(_theta)) {
break;
}
}
}
示例7: Main
static void Main(string[] args)
{
//test constructor
var matr = new Matrix<int>(4, 5);
//test indexer
matr[3, 4] = 8;
Console.WriteLine("{0}", matr[3, 4]);
//test ToString override
Console.WriteLine(matr);
double[,] first = { { 0, 2, 3, 8 }, { 1, 2, 3, 4 }, { 1, 2, 3, 4 }, { 1, 2, 3, 4 } };
double[,] second = { { 1, 2, 3, 8 }, { 1, 2, 3, 6 }, { 1, 2, 8, 4 }, { 1, 0, 3, 4 } };
//test constructor2
Matrix<double> arrFirst = new Matrix<double>(first);
Matrix<double> arrSecond = new Matrix<double>(second);
Console.WriteLine(arrFirst);
Console.WriteLine(arrSecond);
//test operator true
if (arrFirst)
{
Console.WriteLine("There is no zero inside");
}
else Console.WriteLine("There is at least one zero inside\n");
Console.WriteLine("Sum of the two matrices");
//test opretor +
Console.WriteLine(arrFirst + arrSecond);
Console.WriteLine("Substraction of the two matrices");
//test opreator -
Console.WriteLine(arrFirst - arrSecond);
Console.WriteLine("Multiplication of the two matrices");
//test operator *
Console.WriteLine(arrFirst * arrSecond);
Console.WriteLine("Transposed matrix:");
Matrix<double> transposed = arrFirst.Transpose();
Console.WriteLine(transposed);
}
示例8: AdvancedOptimization
private static Vector<double> AdvancedOptimization(Matrix<double> x, Vector<double> y, Vector<double> theta, double lambda)
{
var m = x.RowCount;
var featureCount = theta.Count;
var xTranspose = x.Transpose();
// TODO: convert all of this to use MicrosoftResearch.Infer.Maths instead of MathNet.Numerics
var solver = new MicrosoftResearch.Infer.Maths.BFGS();
var minTheta = solver.Run(
MicrosoftResearch.Infer.Maths.DenseVector.FromList(theta),
10000,
(Vector vector, ref Vector dX) =>
{
var newTheta = DenseVector.Create(featureCount, n => vector[n]);
var regTheta = DenseVector.OfVector(newTheta);
regTheta[0] = 0;
var regThetaSq = DenseVector.OfVector(regTheta);
regThetaSq.MapInplace(t => t * t);
var h = x * newTheta - y;
var cost = ((h * h) / (2D * m)) + ((lambda / (2D * m)) * regThetaSq.Sum());
var grad = ((1D / m) * (xTranspose * h)) + ((lambda / m) * regTheta);
for (var j = 0; j < grad.Count; j++)
{
dX[j] = grad[j];
}
return cost;
});
return DenseVector.Create(theta.Count, i => minTheta[i]);
}
示例9: Simple
public void Simple()
{
var matrix = new Matrix(3, 3);
// [ 1, 4, 7 ]
// [ 2, 5, 8 ]
// [ 3, 6, 9 ]
matrix[0, 0] = 1;
matrix[0, 1] = 4;
matrix[0, 2] = 7;
matrix[1, 0] = 0;
matrix[1, 1] = 5;
matrix[1, 2] = 8;
matrix[2, 0] = 0;
matrix[2, 1] = 0;
matrix[2, 2] = 0;
Assert.AreEqual(matrix.IsTriangular, TriangularMatrixType.Upper);
matrix = matrix.Transpose();
Assert.AreEqual(matrix.IsTriangular, TriangularMatrixType.Lower);
}
示例10: Render
public void Render(DeviceContext deviceContext, int indexCount, Matrix worldMatrix, Matrix viewMatrix, Matrix projectionMatrix, ShaderResourceView texture)
{
worldMatrix.Transpose();
viewMatrix.Transpose();
projectionMatrix.Transpose();
// Lock the constant memory buffer so it can be written to.
DataStream mappedResource;
deviceContext.MapSubresource(ConstantMatrixBuffer, MapMode.WriteDiscard, SharpDX.Direct3D11.MapFlags.None, out mappedResource);
// Copy the transposed matrices (because they are stored in column-major order on the GPU by default) into the constant buffer.
var matrixBuffer = new MatrixBuffer
{
world = worldMatrix,
view = viewMatrix,
projection = projectionMatrix
};
mappedResource.Write(matrixBuffer);
// Unlock the constant buffer.
deviceContext.UnmapSubresource(ConstantMatrixBuffer, 0);
// Set the position of the constant buffer in the vertex shader.
const int bufferNumber = 0;
// Finally set the constant buffer in the vertex shader with the updated values.
deviceContext.VertexShader.SetConstantBuffer(bufferNumber, ConstantMatrixBuffer);
// Set shader resource in the pixel shader.
deviceContext.PixelShader.SetShaderResource(0, texture);
// Set the vertex input layout.
deviceContext.InputAssembler.InputLayout = Layout;
// Set the vertex and pixel shaders that will be used to render this triangle.
deviceContext.VertexShader.Set(VertexShader);
deviceContext.PixelShader.Set(PixelShader);
// Set the sampler state in the pixel shader.
deviceContext.PixelShader.SetSampler(0, SamplerState);
// Render the triangle.
deviceContext.DrawIndexed(indexCount, 0, 0);
}
示例11: TestTransposeFloatMatrix
public void TestTransposeFloatMatrix()
{
using (Matrix<float> mat = new Matrix<float>(1, 3))
{
mat.SetRandUniform(new MCvScalar(-1000.0), new MCvScalar(1000.0));
Matrix<float> matT = mat.Transpose();
for (int i = 0; i < matT.Rows; i++)
for (int j = 0; j < matT.Cols; j++)
EmguAssert.AreEqual(matT[i, j], mat[j, i]);
}
}
示例12: GetWeights
public static Vector<double> GetWeights(Matrix<double> data, Vector<double> targetClassification)
{
var features = data.ColumnCount;
// these are things we are trying to solve for
Vector<double> weights = DenseVector.Create(features, i => 1.0);
var alpha = 0.001;
foreach (var cycle in Enumerable.Range(0, 500))
{
#region Sigmoid Explanation
/*
* multiply all the data by the weights, this gives you the estimation of the current function
* given the weights. multiplying by the sigmoid moves a point into one class vs the other
* if its larger than 0.5 it'll be in class 1, if its smaller than it'll be in class 0. The closer it is
* to 1 means that with the given weights that value is highly probably to be in class 1.
*
* it doesn't matter if the instance is the class the sigmoid says it is,
* the error will shift the weights gradient so over the iterations of the cycles
* the weights will move the final data point towards its actual expected class
*
* for example, if there is a data point with values
*
* [1.0, -0.017612, 14.053064]
*
* where value 1 is the initial weight factor, and values 2 and 3 are the x y coordinates
*
* and lets say the point is categorized at class 0.
*
* Calculating the initial sigma gives you something like 0.9999998
*
* which says its class 1, but thats obviously wrong. However, the error rate here is large
*
* meaning that the gradient wants to move towards the expected data.
*
* As you run the ascent this data point will get smaller and smaller and eventually
*
* the sigmoid will classify it properly
*/
#endregion
var currentData = DenseVector.OfEnumerable(data.Multiply(weights).Select(Sigmoid));
#region Error Explanation
// find out how far off we are from the actual expectation. this is
// like the x2 - x1 part of a derivative
#endregion
var error = targetClassification.Subtract(currentData);
#region Gradient Explanation
// this gives you the direction of change from the current
// set of data. At this point every point is moving in the direction
// of the error rate. A large error means we are far off and trying to move
// towards the actual data, a low error rate means we are really close
// to the target data (so the gradient will be smaller, meaning less delta)
#endregion
var gradient = data.Transpose() * error;
#region Weights Update Explanation
// multiplying by alpha means we'll take a small step in the direction
// of the gradient and add it to the current weights. An initial weights of 1.0
// means we're going to start at the current location of where we are.
#endregion
weights = weights + alpha * gradient;
}
return weights;
}
示例13: SetShaderParameters
/// <summary>
/// Binds the shader and world matricies.
/// </summary>
/// <param name="context">The context to draw from.</param>
/// <param name="world">The world <see cref="Matrix"/> to draw from.</param>
/// <param name="view">The view <see cref="Matrix"/> to use for transforms.</param>
/// <param name="projection">The projection <see cref="Matrix"/> to use for transforms.</param>
/// <returns></returns>
private bool SetShaderParameters(DeviceContext context, Matrix world, Matrix view, Matrix projection)
{
try
{
world.Transpose();
view.Transpose();
projection.Transpose();
context.VertexShader.Set(vertexShader);
context.PixelShader.Set(pixelShader);
DataStream mappedResource;
context.MapSubresource(matrixBuffer, 0, MapMode.WriteDiscard, MapFlags.None, out mappedResource);
mappedResource.Write(world);
mappedResource.Write(view);
mappedResource.Write(projection);
context.UnmapSubresource(matrixBuffer, 0);
context.VertexShader.SetConstantBuffers(0, matrixBuffer);
context.InputAssembler.InputLayout = layout;
return true;
}
catch(Exception)
{
return false;
}
}
示例14: MatrixTransposeDimensions
public void MatrixTransposeDimensions()
{
var matrix = new Matrix(2, 3);
var transpose = matrix.Transpose();
Assert.AreEqual(3, transpose.Rows);
Assert.AreEqual(2, transpose.Columns);
}
示例15: MatrixTransposeValues
public void MatrixTransposeValues()
{
var matrix = new Matrix(new []{1, 2}, new []{3, 4});
var transpose = matrix.Transpose();
Assert.AreEqual(1, transpose[0, 0]);
Assert.AreEqual(2, transpose[1, 0]);
Assert.AreEqual(3, transpose[0, 1]);
Assert.AreEqual(4, transpose[1, 1]);
}