本文整理匯總了C#中System.Matrix.CreateMatrix方法的典型用法代碼示例。如果您正苦於以下問題:C# Matrix.CreateMatrix方法的具體用法?C# Matrix.CreateMatrix怎麽用?C# Matrix.CreateMatrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Matrix
的用法示例。
在下文中一共展示了Matrix.CreateMatrix方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: UserQR
/// <summary>
/// Initializes a new instance of the <see cref="UserQR"/> class. This object will compute the
/// QR factorization when the constructor is called and cache it's factorization.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
public UserQR(Matrix<Complex32> matrix)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount < matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixDimensions);
}
MatrixR = matrix.Clone();
MatrixQ = matrix.CreateMatrix(matrix.RowCount, matrix.RowCount);
for (var i = 0; i < matrix.RowCount; i++)
{
MatrixQ.At(i, i, 1.0f);
}
var minmn = Math.Min(matrix.RowCount, matrix.ColumnCount);
var u = new Complex32[minmn][];
for (var i = 0; i < minmn; i++)
{
u[i] = GenerateColumn(MatrixR, i, i);
ComputeQR(u[i], MatrixR, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.NumberOfParallelWorkerThreads);
}
for (var i = minmn - 1; i >= 0; i--)
{
ComputeQR(u[i], MatrixQ, i, matrix.RowCount, i, matrix.RowCount, Control.NumberOfParallelWorkerThreads);
}
}
示例2: TestCreateMatrix
public void TestCreateMatrix()
{
var matrix = new Matrix<int>(2, 2);
var other_matrix = matrix.CreateMatrix(3, 3);
Assert.IsInstanceOfType(matrix.GetType(), other_matrix);
}
示例3: UserQR
/// <summary>
/// Initializes a new instance of the <see cref="UserQR"/> class. This object will compute the
/// QR factorization when the constructor is called and cache it's factorization.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
public UserQR(Matrix matrix)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount < matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixDimensions);
}
MatrixR = matrix.Clone();
MatrixQ = matrix.CreateMatrix(matrix.RowCount, matrix.RowCount);
for (var i = 0; i < matrix.RowCount; i++)
{
MatrixQ.At(i, i, 1.0);
}
var minmn = Math.Min(matrix.RowCount, matrix.ColumnCount);
var u = new double[minmn][];
for (var i = 0; i < minmn; i++)
{
u[i] = GenerateColumn(MatrixR, i, matrix.RowCount - 1, i);
ComputeQR(u[i], MatrixR, i, matrix.RowCount - 1, i + 1, matrix.ColumnCount - 1);
}
for (var i = minmn - 1; i >= 0; i--)
{
ComputeQR(u[i], MatrixQ, i, matrix.RowCount - 1, i, matrix.RowCount - 1);
}
}
示例4: UserEvd
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public UserEvd(Matrix<Complex32> matrix)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
MatrixEv = DenseMatrix.Identity(order);
MatrixD = matrix.CreateMatrix(order, order);
VectorEv = new LinearAlgebra.Complex.DenseVector(order);
IsSymmetric = true;
for (var i = 0; IsSymmetric && i < order; i++)
{
for (var j = 0; IsSymmetric && j < order; j++)
{
IsSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
}
}
if (IsSymmetric)
{
var matrixCopy = matrix.ToArray();
var tau = new Complex32[order];
var d = new float[order];
var e = new float[order];
SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
SymmetricDiagonalize(d, e, order);
SymmetricUntridiagonalize(matrixCopy, tau, order);
for (var i = 0; i < order; i++)
{
VectorEv[i] = new Complex(d[i], e[i]);
}
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(matrixH, order);
NonsymmetricReduceHessenberToRealSchur(matrixH, order);
}
for (var i = 0; i < VectorEv.Count; i++)
{
MatrixD.At(i, i, (Complex32)VectorEv[i]);
}
}
示例5: Create
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public static UserEvd Create(Matrix<Complex32> matrix)
{
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
var eigenVectors = DenseMatrix.CreateIdentity(order);
var blockDiagonal = matrix.CreateMatrix(order, order);
var eigenValues = new LinearAlgebra.Complex.DenseVector(order);
var isSymmetric = true;
for (var i = 0; isSymmetric && i < order; i++)
{
for (var j = 0; isSymmetric && j < order; j++)
{
isSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
}
}
if (isSymmetric)
{
var matrixCopy = matrix.ToArray();
var tau = new Complex32[order];
var d = new float[order];
var e = new float[order];
SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
SymmetricDiagonalize(eigenVectors, d, e, order);
SymmetricUntridiagonalize(eigenVectors, matrixCopy, tau, order);
for (var i = 0; i < order; i++)
{
eigenValues[i] = new Complex(d[i], e[i]);
}
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order);
NonsymmetricReduceHessenberToRealSchur(eigenVectors, eigenValues, matrixH, order);
}
for (var i = 0; i < eigenValues.Count; i++)
{
blockDiagonal.At(i, i, (Complex32) eigenValues[i]);
}
return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
}
示例6: UserEvd
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public UserEvd(Matrix<Complex> matrix)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
MatrixEv = DenseMatrix.Identity(order);
MatrixD = matrix.CreateMatrix(order, order);
VectorEv = new DenseVector(order);
IsSymmetric = true;
for (var i = 0; i < order & IsSymmetric; i++)
{
for (var j = 0; j < order & IsSymmetric; j++)
{
IsSymmetric &= matrix[i, j] == matrix[j, i].Conjugate();
}
}
if (IsSymmetric)
{
var matrixCopy = matrix.ToArray();
var tau = new Complex[order];
var d = new double[order];
var e = new double[order];
SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
SymmetricDiagonalize(d, e, order);
SymmetricUntridiagonalize(matrixCopy, tau, order);
for (var i = 0; i < order; i++)
{
VectorEv[i] = new Complex(d[i], e[i]);
}
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(matrixH, order);
NonsymmetricReduceHessenberToRealSchur(matrixH, order);
}
MatrixD.SetDiagonal(VectorEv);
}
示例7: UserGramSchmidt
/// <summary>
/// Initializes a new instance of the <see cref="UserGramSchmidt"/> class. This object creates an unitary matrix
/// using the modified Gram-Schmidt method.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> row count is less then column count</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is rank deficient</exception>
public UserGramSchmidt(Matrix<Complex32> matrix)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount < matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixDimensions);
}
MatrixQ = matrix.Clone();
MatrixR = matrix.CreateMatrix(matrix.ColumnCount, matrix.ColumnCount);
for (var k = 0; k < MatrixQ.ColumnCount; k++)
{
var norm = MatrixQ.Column(k).Norm(2).Real;
if (norm == 0.0f)
{
throw new ArgumentException(Resources.ArgumentMatrixNotRankDeficient);
}
MatrixR.At(k, k, norm);
for (var i = 0; i < MatrixQ.RowCount; i++)
{
MatrixQ.At(i, k, MatrixQ.At(i, k) / norm);
}
for (var j = k + 1; j < MatrixQ.ColumnCount; j++)
{
var dot = Complex32.Zero;
for (int i = 0; i < MatrixQ.RowCount; i++)
{
dot += MatrixQ.Column(k)[i].Conjugate() * MatrixQ.Column(j)[i];
}
MatrixR.At(k, j, dot);
for (var i = 0; i < MatrixQ.RowCount; i++)
{
var value = MatrixQ.At(i, j) - (MatrixQ.At(i, k) * dot);
MatrixQ.At(i, j, value);
}
}
}
}
示例8: Create
/// <summary>
/// Initializes a new instance of the <see cref="UserGramSchmidt"/> class. This object creates an unitary matrix
/// using the modified Gram-Schmidt method.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> row count is less then column count</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is rank deficient</exception>
public static UserGramSchmidt Create(Matrix<Complex32> matrix)
{
if (matrix.RowCount < matrix.ColumnCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(matrix);
}
var q = matrix.Clone();
var r = matrix.CreateMatrix(matrix.ColumnCount, matrix.ColumnCount);
for (var k = 0; k < q.ColumnCount; k++)
{
var norm = q.Column(k).L2Norm().Real;
if (norm == 0.0f)
{
throw new ArgumentException(Resources.ArgumentMatrixNotRankDeficient);
}
r.At(k, k, norm);
for (var i = 0; i < q.RowCount; i++)
{
q.At(i, k, q.At(i, k) / norm);
}
for (var j = k + 1; j < q.ColumnCount; j++)
{
var dot = Complex32.Zero;
for (int i = 0; i < q.RowCount; i++)
{
dot += q.Column(k)[i].Conjugate() * q.Column(j)[i];
}
r.At(k, j, dot);
for (var i = 0; i < q.RowCount; i++)
{
var value = q.At(i, j) - (q.At(i, k) * dot);
q.At(i, j, value);
}
}
}
return new UserGramSchmidt(q, r);
}
示例9: UserGramSchmidt
/// <summary>
/// Initializes a new instance of the <see cref="UserGramSchmidt"/> class. This object creates an orthogonal matrix
/// using the modified Gram-Schmidt method.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> row count is less then column count</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is rank deficient</exception>
public UserGramSchmidt(Matrix<double> matrix)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount < matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixDimensions);
}
MatrixQ = matrix.Clone();
MatrixR = matrix.CreateMatrix(matrix.ColumnCount, matrix.ColumnCount);
for (var k = 0; k < MatrixQ.ColumnCount; k++)
{
var norm = MatrixQ.Column(k).Norm(2);
if (norm == 0.0)
{
throw new ArgumentException(Resources.ArgumentMatrixNotRankDeficient);
}
MatrixR.At(k, k, norm);
for (var i = 0; i < MatrixQ.RowCount; i++)
{
MatrixQ.At(i, k, MatrixQ.At(i, k) / norm);
}
for (var j = k + 1; j < MatrixQ.ColumnCount; j++)
{
var dot = MatrixQ.Column(k).DotProduct(MatrixQ.Column(j));
MatrixR.At(k, j, dot);
for (var i = 0; i < MatrixQ.RowCount; i++)
{
var value = MatrixQ.At(i, j) - (MatrixQ.At(i, k) * dot);
MatrixQ.At(i, j, value);
}
}
}
}
示例10: Create
/// <summary>
/// Initializes a new instance of the <see cref="UserGramSchmidt"/> class. This object creates an orthogonal matrix
/// using the modified Gram-Schmidt method.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> row count is less then column count</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is rank deficient</exception>
public static UserGramSchmidt Create(Matrix<float> matrix)
{
if (matrix.RowCount < matrix.ColumnCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(matrix);
}
var q = matrix.Clone();
var r = matrix.CreateMatrix(matrix.ColumnCount, matrix.ColumnCount);
for (var k = 0; k < q.ColumnCount; k++)
{
var norm = q.Column(k).L2Norm();
if (norm == 0.0)
{
throw new ArgumentException(Resources.ArgumentMatrixNotRankDeficient);
}
r.At(k, k, norm);
for (var i = 0; i < q.RowCount; i++)
{
q.At(i, k, q.At(i, k) / norm);
}
for (var j = k + 1; j < q.ColumnCount; j++)
{
var dot = q.Column(k).DotProduct(q.Column(j));
r.At(k, j, dot);
for (var i = 0; i < q.RowCount; i++)
{
var value = q.At(i, j) - (q.At(i, k) * dot);
q.At(i, j, value);
}
}
}
return new UserGramSchmidt(q, r);
}
示例11: Create
/// <summary>
/// Initializes a new instance of the <see cref="UserQR"/> class. This object will compute the
/// QR factorization when the constructor is called and cache it's factorization.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <param name="method">The QR factorization method to use.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
public static UserQR Create(Matrix<Complex> matrix, QRMethod method = QRMethod.Full)
{
if (matrix.RowCount < matrix.ColumnCount)
{
throw Matrix.DimensionsDontMatch<ArgumentException>(matrix);
}
Matrix<Complex> q;
Matrix<Complex> r;
var minmn = Math.Min(matrix.RowCount, matrix.ColumnCount);
var u = new Complex[minmn][];
if (method == QRMethod.Full)
{
r = matrix.Clone();
q = matrix.CreateMatrix(matrix.RowCount, matrix.RowCount);
for (var i = 0; i < matrix.RowCount; i++)
{
q.At(i, i, 1.0f);
}
for (var i = 0; i < minmn; i++)
{
u[i] = GenerateColumn(r, i, i);
ComputeQR(u[i], r, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.NumberOfParallelWorkerThreads);
}
for (var i = minmn - 1; i >= 0; i--)
{
ComputeQR(u[i], q, i, matrix.RowCount, i, matrix.RowCount, Control.NumberOfParallelWorkerThreads);
}
}
else
{
q = matrix.Clone();
for (var i = 0; i < minmn; i++)
{
u[i] = GenerateColumn(q, i, i);
ComputeQR(u[i], q, i, matrix.RowCount, i + 1, matrix.ColumnCount, Control.NumberOfParallelWorkerThreads);
}
r = q.SubMatrix(0, matrix.ColumnCount, 0, matrix.ColumnCount);
q.Clear();
for (var i = 0; i < matrix.ColumnCount; i++)
{
q.At(i, i, 1.0f);
}
for (var i = minmn - 1; i >= 0; i--)
{
ComputeQR(u[i], q, i, matrix.RowCount, i, matrix.ColumnCount, Control.NumberOfParallelWorkerThreads);
}
}
return new UserQR(q, r, method);
}
示例12: StrictlyLowerTriangle
/// <summary>
/// Puts the strictly lower triangle of this matrix into the result matrix.
/// </summary>
/// <param name="result">Where to store the lower triangle.</param>
/// <exception cref="ArgumentNullException">If <paramref name="result"/> is <see langword="null" />.</exception>
/// <exception cref="ArgumentException">If the result matrix's dimensions are not the same as this matrix.</exception>
public override void StrictlyLowerTriangle(Matrix<Complex> result)
{
if (result == null)
{
throw new ArgumentNullException("result");
}
if (result.RowCount != RowCount || result.ColumnCount != ColumnCount)
{
throw DimensionsDontMatch<ArgumentException>(this, result);
}
if (ReferenceEquals(this, result))
{
var tmp = result.CreateMatrix(result.RowCount, result.ColumnCount);
StrictlyLowerTriangle(tmp);
tmp.CopyTo(result);
}
else
{
result.Clear();
StrictlyLowerTriangleImpl(result);
}
}
示例13: Solve
/// <summary>
/// Solves the matrix equation AX = B, where A is the coefficient matrix, B is the
/// solution matrix and X is the unknown matrix.
/// </summary>
/// <param name="matrix">The coefficient <see cref="Matrix"/>, <c>A</c>.</param>
/// <param name="input">The solution <see cref="Matrix"/>, <c>B</c>.</param>
/// <returns>The result <see cref="Matrix"/>, <c>X</c>.</returns>
public Matrix Solve(Matrix matrix, Matrix input)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (input == null)
{
throw new ArgumentNullException("input");
}
var result = (Matrix)matrix.CreateMatrix(input.RowCount, input.ColumnCount);
Solve(matrix, input, result);
return result;
}
示例14: TransposeAndMultiply
/// <summary>
/// Multiplies this matrix with transpose of another matrix and returns the result.
/// </summary>
/// <param name="other">The matrix to multiply with.</param>
/// <exception cref="ArgumentException">If <strong>this.Columns != other.Rows</strong>.</exception>
/// <exception cref="ArgumentNullException">If the other matrix is <see langword="null" />.</exception>
/// <returns>The result of multiplication.</returns>
public override Matrix<float> TransposeAndMultiply(Matrix<float> other)
{
var otherDiagonal = other as DiagonalMatrix;
if (otherDiagonal == null)
{
return base.TransposeAndMultiply(other);
}
if (ColumnCount != otherDiagonal.ColumnCount)
{
throw DimensionsDontMatch<ArgumentException>(this, otherDiagonal);
}
var result = other.CreateMatrix(RowCount, other.RowCount);
TransposeAndMultiply(other, result);
return result;
}
示例15: Multiply
/// <summary>
/// Multiplies this matrix with another matrix and returns the result.
/// </summary>
/// <param name="other">The matrix to multiply with.</param>
/// <exception cref="ArgumentException">If <strong>this.Columns != other.Rows</strong>.</exception>
/// <exception cref="ArgumentNullException">If the other matrix is <see langword="null" />.</exception>
/// <returns>The result of multiplication.</returns>
public override Matrix<float> Multiply(Matrix<float> other)
{
if (other == null)
{
throw new ArgumentNullException("other");
}
if (ColumnCount != other.RowCount)
{
throw DimensionsDontMatch<ArgumentException>(this, other);
}
var result = other.CreateMatrix(RowCount, other.ColumnCount);
Multiply(other, result);
return result;
}