本文整理匯總了C#中System.Matrix.ToArray方法的典型用法代碼示例。如果您正苦於以下問題:C# Matrix.ToArray方法的具體用法?C# Matrix.ToArray怎麽用?C# Matrix.ToArray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Matrix
的用法示例。
在下文中一共展示了Matrix.ToArray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: InverseDeterminant
public static void InverseDeterminant(Matrix matrix, out Matrix inverse, out double determinant)
{
int n = matrix.Rows;
if (matrix.Columns != n)
{
throw new ArgumentException("The matrix isn't a square matrix.");
}
double[,] a = matrix.ToArray();
if (!trfac.spdmatrixcholesky(ref a, n, false))
{
throw new ArithmeticException();
}
determinant = matdet.spdmatrixcholeskydet(ref a, n);
int info = 0;
matinv.matinvreport rep = new matinv.matinvreport();
matinv.spdmatrixcholeskyinverse(ref a, n, false, ref info, ref rep);
for (int i = 0; i < n; i++)
{
for (int j = i + 1; j < n; j++)
{
a[i, j] = a[j, i];
}
}
inverse = new Matrix(a);
}
示例2: LUDecomposition
private LUDecomposition(Matrix matrix)
{
m = matrix.Rows;
n = matrix.Columns;
q = Math.Min(m, n);
a = matrix.ToArray();
pivots = new int[0];
if (n == 0 && m == 0)
{
// Ignore degenerate case.
return;
}
trfac.rmatrixlu(ref a, m, n, ref pivots);
}
示例3: Create
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public static UserEvd Create(Matrix<float> matrix)
{
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
var eigenVectors = Matrix<float>.Build.SameAs(matrix, order, order);
var blockDiagonal = Matrix<float>.Build.SameAs(matrix, order, order);
var eigenValues = new LinearAlgebra.Complex.DenseVector(order);
var isSymmetric = true;
for (var i = 0; isSymmetric && i < order; i++)
{
for (var j = 0; isSymmetric && j < order; j++)
{
isSymmetric &= matrix.At(i, j) == matrix.At(j, i);
}
}
var d = new float[order];
var e = new float[order];
if (isSymmetric)
{
matrix.CopyTo(eigenVectors);
d = eigenVectors.Row(order - 1).ToArray();
SymmetricTridiagonalize(eigenVectors, d, e, order);
SymmetricDiagonalize(eigenVectors, d, e, order);
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order);
NonsymmetricReduceHessenberToRealSchur(eigenVectors, matrixH, d, e, order);
}
for (var i = 0; i < order; i++)
{
blockDiagonal.At(i, i, d[i]);
if (e[i] > 0)
{
blockDiagonal.At(i, i + 1, e[i]);
}
else if (e[i] < 0)
{
blockDiagonal.At(i, i - 1, e[i]);
}
}
for (var i = 0; i < order; i++)
{
eigenValues[i] = new Complex(d[i], e[i]);
}
return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
}
示例4: UserEvd
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public UserEvd(Matrix<Complex32> matrix)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
MatrixEv = DenseMatrix.Identity(order);
MatrixD = matrix.CreateMatrix(order, order);
VectorEv = new LinearAlgebra.Complex.DenseVector(order);
IsSymmetric = true;
for (var i = 0; IsSymmetric && i < order; i++)
{
for (var j = 0; IsSymmetric && j < order; j++)
{
IsSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
}
}
if (IsSymmetric)
{
var matrixCopy = matrix.ToArray();
var tau = new Complex32[order];
var d = new float[order];
var e = new float[order];
SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
SymmetricDiagonalize(d, e, order);
SymmetricUntridiagonalize(matrixCopy, tau, order);
for (var i = 0; i < order; i++)
{
VectorEv[i] = new Complex(d[i], e[i]);
}
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(matrixH, order);
NonsymmetricReduceHessenberToRealSchur(matrixH, order);
}
for (var i = 0; i < VectorEv.Count; i++)
{
MatrixD.At(i, i, (Complex32)VectorEv[i]);
}
}
示例5: Create
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public static UserEvd Create(Matrix<Complex> matrix)
{
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
var eigenVectors = DenseMatrix.Identity(order);
var blockDiagonal = matrix.CreateMatrix(order, order);
var eigenValues = new DenseVector(order);
var isSymmetric = true;
for (var i = 0; isSymmetric && i < order; i++)
{
for (var j = 0; isSymmetric && j < order; j++)
{
isSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
}
}
if (isSymmetric)
{
var matrixCopy = matrix.ToArray();
var tau = new Complex[order];
var d = new double[order];
var e = new double[order];
SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
SymmetricDiagonalize(eigenVectors, d, e, order);
SymmetricUntridiagonalize(eigenVectors, matrixCopy, tau, order);
for (var i = 0; i < order; i++)
{
eigenValues[i] = new Complex(d[i], e[i]);
}
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order);
NonsymmetricReduceHessenberToRealSchur(eigenVectors, eigenValues, matrixH, order);
}
blockDiagonal.SetDiagonal(eigenValues);
return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
}
示例6: Create
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <param name="symmetricity">If it is known whether the matrix is symmetric or not the routine can skip checking it itself.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public static UserEvd Create(Matrix<Complex32> matrix, Symmetricity symmetricity)
{
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
var eigenVectors = DenseMatrix.CreateIdentity(order);
var blockDiagonal = Matrix<Complex32>.Build.SameAs(matrix, order, order);
var eigenValues = new LinearAlgebra.Complex.DenseVector(order);
bool isSymmetric;
switch (symmetricity)
{
case Symmetricity.Hermitian:
isSymmetric = true;
break;
case Symmetricity.Asymmetric:
isSymmetric = false;
break;
default:
isSymmetric = matrix.IsHermitian();
break;
}
if (isSymmetric)
{
var matrixCopy = matrix.ToArray();
var tau = new Complex32[order];
var d = new float[order];
var e = new float[order];
SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
SymmetricDiagonalize(eigenVectors, d, e, order);
SymmetricUntridiagonalize(eigenVectors, matrixCopy, tau, order);
for (var i = 0; i < order; i++)
{
eigenValues[i] = new Complex(d[i], e[i]);
}
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order);
NonsymmetricReduceHessenberToRealSchur(eigenVectors, eigenValues, matrixH, order);
}
for (var i = 0; i < eigenValues.Count; i++)
{
blockDiagonal.At(i, i, (Complex32) eigenValues[i]);
}
return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
}
示例7: UserEvd
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public UserEvd(Matrix<Complex> matrix)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
MatrixEv = DenseMatrix.Identity(order);
MatrixD = matrix.CreateMatrix(order, order);
VectorEv = new DenseVector(order);
IsSymmetric = true;
for (var i = 0; i < order & IsSymmetric; i++)
{
for (var j = 0; j < order & IsSymmetric; j++)
{
IsSymmetric &= matrix[i, j] == matrix[j, i].Conjugate();
}
}
if (IsSymmetric)
{
var matrixCopy = matrix.ToArray();
var tau = new Complex[order];
var d = new double[order];
var e = new double[order];
SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
SymmetricDiagonalize(d, e, order);
SymmetricUntridiagonalize(matrixCopy, tau, order);
for (var i = 0; i < order; i++)
{
VectorEv[i] = new Complex(d[i], e[i]);
}
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(matrixH, order);
NonsymmetricReduceHessenberToRealSchur(matrixH, order);
}
MatrixD.SetDiagonal(VectorEv);
}
示例8: UserEvd
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public UserEvd(Matrix<float> matrix)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
MatrixEv = matrix.CreateMatrix(order, order);
MatrixD = matrix.CreateMatrix(order, order);
VectorEv = new LinearAlgebra.Complex.DenseVector(order);
IsSymmetric = true;
for (var i = 0; IsSymmetric && i < order; i++)
{
for (var j = 0; IsSymmetric && j < order; j++)
{
IsSymmetric &= matrix.At(i, j) == matrix.At(j, i);
}
}
var d = new float[order];
var e = new float[order];
if (IsSymmetric)
{
matrix.CopyTo(MatrixEv);
d = MatrixEv.Row(order - 1).ToArray();
SymmetricTridiagonalize(d, e, order);
SymmetricDiagonalize(d, e, order);
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(matrixH, order);
NonsymmetricReduceHessenberToRealSchur(matrixH, d, e, order);
}
for (var i = 0; i < order; i++)
{
MatrixD.At(i, i, d[i]);
if (e[i] > 0)
{
MatrixD.At(i, i + 1, e[i]);
}
else if (e[i] < 0)
{
MatrixD.At(i, i - 1, e[i]);
}
}
for (var i = 0; i < order; i++)
{
VectorEv[i] = new Complex(d[i], e[i]);
}
}
示例9: PrintMatrix
public void PrintMatrix(Matrix matrix, float[,] matrixAsArray, string message)
{
float[,] matrixArr;
if (matrixAsArray != null)
{
matrixArr = (float[,])matrixAsArray.Clone();
}
else
{
matrixArr = matrix.ToArray();
}
string path = MyConstants.IMAGE_PROCESSING_TEXT_FILES + "KlTransofmData" + Now.Millisecond.ToString() + ".txt";
using (StreamWriter sw = System.IO.File.Exists(Server.MapPath(path)) ? System.IO.File.AppendText(Server.MapPath(path)) : System.IO.File.CreateText(Server.MapPath(path)))
{
sw.WriteLine("-----" + message + "-------");
for (int i = 0; i < matrixArr.GetLength(0); i++)
{
for (int j = 0; j < matrixArr.GetLength(1); j++)
{
// DeleteFileIfExist(path);
sw.Write(" " + matrixArr[i, j]);
}
sw.WriteLine();
}
sw.WriteLine("-----" + message + " end ");
}
}
示例10:
public void Parameter (string name, Matrix matrix)
{
int handle = Gl.glGetHandleARB(Gl.GL_PROGRAM_OBJECT_ARB);
int var = Gl.glGetUniformLocation(this.programHandle, name);
Gl.glUniformMatrix4fv(var, 1, 1, matrix.ToArray());
}
示例11: UpdateModel
/// <summary>
/// Updates the underlying interpolation mode, if needed.
/// </summary>
private void UpdateModel()
{
switch (this.interpolationType)
{
// Right now only the Least Squares requires this operation to be done.
case EInterpolationType.LEAST_SQUARES:
this.quadraticModel = new Fairmat.Optimization.QuadraticModel();
// Unroll matrix and coordinate vectors in order to make it suitable
// for the Quadratic model implementation.
int n = this.values.R * this.values.C;
Matrix xy = new Matrix(n, 2);
Vector z = new Vector(n);
int count = 0;
for (int x = 0; x < this.coordinatesX.Length; x++)
{
for (int y = 0; y < this.coordinatesY.Length; y++)
{
xy[count, Range.All] = ((Matrix)new Vector() { this[x, -1], this[-1, y] }).T;
z[count] = this[x, y];
count++;
}
}
this.quadraticModel.Estimate(xy.ToArray() as double[,], z.ToArray() as double[]);
break;
default:
break;
}
}
示例12: EigenvalueDecomposition
/// <summary>Check for symmetry, then construct the eigenvalue decomposition</summary>
public EigenvalueDecomposition(Matrix matrix)
{
Contract.Assert(matrix != null);
if (!matrix.IsSquare)
{
throw new InvalidOperationException();
}
double[][] A = matrix.ToArray();
n = matrix.Width;
V = new double[n][];
for (int i = 0; i < n; i++)
{
V[i] = new double[n];
}
d = new double[n];
e = new double[n];
issymmetric = true;
for (int j = 0; (j < n) & issymmetric; j++)
{
for (int i = 0; (i < n) & issymmetric; i++)
{
issymmetric = (A[i][j] == A[j][i]);
}
}
if (issymmetric)
{
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
V[i][j] = A[i][j];
}
}
// Tridiagonalize.
tred2();
// Diagonalize.
tql2();
}
else
{
H = new double[n][];
for (int i2 = 0; i2 < n; i2++)
{
H[i2] = new double[n];
}
ort = new double[n];
for (int j = 0; j < n; j++)
{
for (int i = 0; i < n; i++)
{
H[i][j] = A[i][j];
}
}
// Reduce to Hessenberg form.
orthes();
// Reduce Hessenberg to real Schur form.
hqr2();
}
}
示例13: TestInverse
public static void TestInverse()
{
//----------------------
//| 0.18 | 0.41 | 0.14 |
//| 0.60 | 0.24 | 0.30 |
//| 0.57 | 0.99 | 0.97 |
//----------------------
Matrix matrix = new Matrix(3, 3);
Matrix matrix2 = new Matrix(4, 4);
matrix.SetValue(0, 0, 0.18);
matrix.SetValue(0, 1, 0.41);
matrix.SetValue(0, 2, 0.14);
matrix.SetValue(1, 0, 0.60);
matrix.SetValue(1, 1, 0.24);
matrix.SetValue(1, 2, 0.30);
matrix.SetValue(2, 0, 0.57);
matrix.SetValue(2, 1, 0.99);
matrix.SetValue(2, 2, 0.97);
double[,] test = matrix.ToArray();
for (uint i = 0; i < matrix.Columns; i++)
{
for (uint j = 0; j < matrix.Rows; j++)
{
matrix2.SetValue(i + 1, j + 1, matrix.GetValue(i, j));
}
}
//LU分解による方法
Matrix inv = new Matrix(3, 3);
int sig;
Permutation perm = new Permutation(3);
perm.Initialize();
LinearAlgebra.LUDecomposition(ref matrix, ref perm, out sig);
LinearAlgebra.LUInvert(matrix, perm, ref inv);
for (uint i = 0; i < inv.Columns; i++)
{
for (uint j = 0; j < inv.Rows; j++)
{
Console.Write(inv.GetValue(i, j).ToString("F4").PadLeft(8) + " | ");
}
Console.WriteLine();
}
Console.WriteLine();
//部分行列のテスト
perm.Initialize();
Matrix inv2 = new Matrix(4, 4);
MatrixView mView = new MatrixView(matrix2, 1, 1, 3, 3);
MatrixView mViewINV = new MatrixView(inv2, 0, 1, 3, 3);
LinearAlgebra.LUDecomposition(ref mView, ref perm, out sig);
LinearAlgebra.LUInvert(mView, perm, ref mViewINV);
for (uint i = 0; i < mViewINV.ColumnSize; i++)
{
for (uint j = 0; j < mViewINV.RowSize; j++)
{
Console.Write(mViewINV.GetValue(i, j).ToString("F4").PadLeft(8) + " | ");
}
Console.WriteLine();
}
Console.WriteLine();
for (uint i = 0; i < inv2.Columns; i++)
{
for (uint j = 0; j < inv2.Rows; j++)
{
Console.Write(inv2.GetValue(i, j).ToString("F4").PadLeft(8) + " | ");
}
Console.WriteLine();
}
Console.Read();
}
示例14: Create
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <param name="symmetricity">If it is known whether the matrix is symmetric or not the routine can skip checking it itself.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public static UserEvd Create(Matrix<double> matrix, Symmetricity symmetricity)
{
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
var eigenVectors = Matrix<double>.Build.SameAs(matrix, order, order);
var blockDiagonal = Matrix<double>.Build.SameAs(matrix, order, order);
var eigenValues = new LinearAlgebra.Complex.DenseVector(order);
bool isSymmetric;
switch (symmetricity)
{
case Symmetricity.Symmetric:
case Symmetricity.Hermitian:
isSymmetric = true;
break;
case Symmetricity.Asymmetric:
isSymmetric = false;
break;
default:
isSymmetric = matrix.IsSymmetric();
break;
}
var d = new double[order];
var e = new double[order];
if (isSymmetric)
{
matrix.CopyTo(eigenVectors);
d = eigenVectors.Row(order - 1).ToArray();
SymmetricTridiagonalize(eigenVectors, d, e, order);
SymmetricDiagonalize(eigenVectors, d, e, order);
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order);
NonsymmetricReduceHessenberToRealSchur(eigenVectors, matrixH, d, e, order);
}
for (var i = 0; i < order; i++)
{
blockDiagonal.At(i, i, d[i]);
if (e[i] > 0)
{
blockDiagonal.At(i, i + 1, e[i]);
}
else if (e[i] < 0)
{
blockDiagonal.At(i, i - 1, e[i]);
}
}
for (var i = 0; i < order; i++)
{
eigenValues[i] = new Complex(d[i], e[i]);
}
return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
}
示例15: ToArrayTest
public void ToArrayTest()
{
double[,] data = null; // TODO: инициализация подходящего значения
Matrix target = new Matrix(data); // TODO: инициализация подходящего значения
double[,] expected = null; // TODO: инициализация подходящего значения
double[,] actual;
actual = target.ToArray();
Assert.AreEqual(expected, actual);
Assert.Inconclusive("Проверьте правильность этого метода теста.");
}