當前位置: 首頁>>代碼示例>>C#>>正文


C# Matrix.CopyTo方法代碼示例

本文整理匯總了C#中System.Matrix.CopyTo方法的典型用法代碼示例。如果您正苦於以下問題:C# Matrix.CopyTo方法的具體用法?C# Matrix.CopyTo怎麽用?C# Matrix.CopyTo使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在System.Matrix的用法示例。


在下文中一共展示了Matrix.CopyTo方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: Create

        /// <summary>
        /// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public static UserEvd Create(Matrix<float> matrix)
        {
            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matricies for eigenvalues and eigenvectors
            var eigenVectors = Matrix<float>.Build.SameAs(matrix, order, order);
            var blockDiagonal = Matrix<float>.Build.SameAs(matrix, order, order);
            var eigenValues = new LinearAlgebra.Complex.DenseVector(order);

            var isSymmetric = true;

            for (var i = 0; isSymmetric && i < order; i++)
            {
                for (var j = 0; isSymmetric && j < order; j++)
                {
                    isSymmetric &= matrix.At(i, j) == matrix.At(j, i);
                }
            }

            var d = new float[order];
            var e = new float[order];

            if (isSymmetric)
            {
                matrix.CopyTo(eigenVectors);
                d = eigenVectors.Row(order - 1).ToArray();

                SymmetricTridiagonalize(eigenVectors, d, e, order);
                SymmetricDiagonalize(eigenVectors, d, e, order);
            }
            else
            {
                var matrixH = matrix.ToArray();

                NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order);
                NonsymmetricReduceHessenberToRealSchur(eigenVectors, matrixH, d, e, order);
            }

            for (var i = 0; i < order; i++)
            {
                blockDiagonal.At(i, i, d[i]);

                if (e[i] > 0)
                {
                    blockDiagonal.At(i, i + 1, e[i]);
                }
                else if (e[i] < 0)
                {
                    blockDiagonal.At(i, i - 1, e[i]);
                }
            }

            for (var i = 0; i < order; i++)
            {
                eigenValues[i] = new Complex(d[i], e[i]);
            }

            return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
        }
開發者ID:rmundy,項目名稱:mathnet-numerics,代碼行數:71,代碼來源:UserEvd.cs

示例2: DoAdd

        /// <summary>
        /// Adds another matrix to this matrix.
        /// </summary>
        /// <param name="other">The matrix to add to this matrix.</param>
        /// <param name="result">The matrix to store the result of the addition.</param>
        /// <exception cref="ArgumentOutOfRangeException">If the two matrices don't have the same dimensions.</exception>
        protected override void DoAdd(Matrix<Complex> other, Matrix<Complex> result)
        {
            // diagonal + diagonal = diagonal
            var diagOther = other as DiagonalMatrix;
            var diagResult = result as DiagonalMatrix;
            if (diagOther != null && diagResult != null)
            {
                Control.LinearAlgebraProvider.AddArrays(_data, diagOther._data, diagResult._data);
                return;
            }

            other.CopyTo(result);
            for (int i = 0; i < _data.Length; i++)
            {
                result.At(i, i, result.At(i, i) + _data[i]);
            }
        }
開發者ID:smoothdeveloper,項目名稱:mathnet-numerics,代碼行數:23,代碼來源:DiagonalMatrix.cs

示例3: Solve

        /// <summary>
        /// Solves a system of linear equations, <b>AX = B</b>, with A Cholesky factorized.
        /// </summary>
        /// <param name="input">The right hand side <see cref="Matrix{T}"/>, <b>B</b>.</param>
        /// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>X</b>.</param>
        public override void Solve(Matrix<Complex32> input, Matrix<Complex32> result)
        {
            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            // Check for proper dimensions.
            if (result.RowCount != input.RowCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSameRowDimension);
            }

            if (result.ColumnCount != input.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSameColumnDimension);
            }

            if (input.RowCount != CholeskyFactor.RowCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixDimensions);
            }

            input.CopyTo(result);
            var order = CholeskyFactor.RowCount;

            for (var c = 0; c < result.ColumnCount; c++)
            {
                // Solve L*Y = B;
                Complex32 sum;
                for (var i = 0; i < order; i++)
                {
                    sum = result.At(i, c);
                    for (var k = i - 1; k >= 0; k--)
                    {
                        sum -= CholeskyFactor.At(i, k) * result.At(k, c);
                    }

                    result.At(i, c, sum / CholeskyFactor.At(i, i));
                }

                // Solve L'*X = Y;
                for (var i = order - 1; i >= 0; i--)
                {
                    sum = result.At(i, c);
                    for (var k = i + 1; k < order; k++)
                    {
                        sum -= CholeskyFactor.At(k, i).Conjugate() * result.At(k, c);
                    }

                    result.At(i, c, sum / CholeskyFactor.At(i, i));
                }
            }
        }
開發者ID:jvangael,項目名稱:mathnet-numerics,代碼行數:64,代碼來源:UserCholesky.cs

示例4: Solve

        /// <summary>
        /// Solves a system of linear equations, <c>AX = B</c>, with A LU factorized.
        /// </summary>
        /// <param name="input">The right hand side <see cref="Matrix{T}"/>, <c>B</c>.</param>
        /// <param name="result">The left hand side <see cref="Matrix{T}"/>, <c>X</c>.</param>
        public override void Solve(Matrix<Complex> input, Matrix<Complex> result)
        {
            // Check for proper arguments.
            if (input == null)
            {
                throw new ArgumentNullException("input");
            }

            if (result == null)
            {
                throw new ArgumentNullException("result");
            }

            // Check for proper dimensions.
            if (result.RowCount != input.RowCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSameRowDimension);
            }

            if (result.ColumnCount != input.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSameColumnDimension);
            }

            if (input.RowCount != Factors.RowCount)
            {
                throw Matrix.DimensionsDontMatch<ArgumentException>(input, Factors);
            }

            // Copy the contents of input to result.
            input.CopyTo(result);
            for (var i = 0; i < Pivots.Length; i++)
            {
                if (Pivots[i] == i)
                {
                    continue;
                }

                var p = Pivots[i];
                for (var j = 0; j < result.ColumnCount; j++)
                {
                    var temp = result.At(p, j);
                    result.At(p, j, result.At(i, j));
                    result.At(i, j, temp);
                }
            }

            var order = Factors.RowCount;

            // Solve L*Y = P*B
            for (var k = 0; k < order; k++)
            {
                for (var i = k + 1; i < order; i++)
                {
                    for (var j = 0; j < result.ColumnCount; j++)
                    {
                        var temp = result.At(k, j)*Factors.At(i, k);
                        result.At(i, j, result.At(i, j) - temp);
                    }
                }
            }

            // Solve U*X = Y;
            for (var k = order - 1; k >= 0; k--)
            {
                for (var j = 0; j < result.ColumnCount; j++)
                {
                    result.At(k, j, (result.At(k, j)/Factors.At(k, k)));
                }

                for (var i = 0; i < k; i++)
                {
                    for (var j = 0; j < result.ColumnCount; j++)
                    {
                        var temp = result.At(k, j)*Factors.At(i, k);
                        result.At(i, j, result.At(i, j) - temp);
                    }
                }
            }
        }
開發者ID:Jungwon,項目名稱:mathnet-numerics,代碼行數:85,代碼來源:UserLU.cs

示例5: Solve

        /// <summary>
        /// Solves a system of linear equations, <b>AX = B</b>, with A Cholesky factorized.
        /// </summary>
        /// <param name="input">The right hand side <see cref="Matrix{T}"/>, <b>B</b>.</param>
        /// <param name="result">The left hand side <see cref="Matrix{T}"/>, <b>X</b>.</param>
        public override void Solve(Matrix<float> input, Matrix<float> result)
        {
            if (result.RowCount != input.RowCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSameRowDimension);
            }

            if (result.ColumnCount != input.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSameColumnDimension);
            }

            if (input.RowCount != Factor.RowCount)
            {
                throw Matrix.DimensionsDontMatch<ArgumentException>(input, Factor);
            }

            input.CopyTo(result);
            var order = Factor.RowCount;

            for (var c = 0; c < result.ColumnCount; c++)
            {
                // Solve L*Y = B;
                float sum;
                for (var i = 0; i < order; i++)
                {
                    sum = result.At(i, c);
                    for (var k = i - 1; k >= 0; k--)
                    {
                        sum -= Factor.At(i, k)*result.At(k, c);
                    }

                    result.At(i, c, sum/Factor.At(i, i));
                }

                // Solve L'*X = Y;
                for (var i = order - 1; i >= 0; i--)
                {
                    sum = result.At(i, c);
                    for (var k = i + 1; k < order; k++)
                    {
                        sum -= Factor.At(k, i)*result.At(k, c);
                    }

                    result.At(i, c, sum/Factor.At(i, i));
                }
            }
        }
開發者ID:larzw,項目名稱:mathnet-numerics,代碼行數:53,代碼來源:UserCholesky.cs

示例6: UserEvd

        /// <summary>
        /// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public UserEvd(Matrix<float> matrix)
        {
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matricies for eigenvalues and eigenvectors
            MatrixEv = matrix.CreateMatrix(order, order);
            MatrixD = matrix.CreateMatrix(order, order);
            VectorEv = new LinearAlgebra.Complex.DenseVector(order);
           
            IsSymmetric = true;

            for (var i = 0; IsSymmetric && i < order; i++)
            {
                for (var j = 0; IsSymmetric && j < order; j++)
                {
                    IsSymmetric &= matrix.At(i, j) == matrix.At(j, i);
                }
            }

            var d = new float[order];
            var e = new float[order];

            if (IsSymmetric)
            {
                matrix.CopyTo(MatrixEv);
                d = MatrixEv.Row(order - 1).ToArray();

                SymmetricTridiagonalize(d, e, order);
                SymmetricDiagonalize(d, e, order);
            }
            else
            {
                var matrixH = matrix.ToArray();

                NonsymmetricReduceToHessenberg(matrixH, order);
                NonsymmetricReduceHessenberToRealSchur(matrixH, d, e, order);
            }

            for (var i = 0; i < order; i++)
            {
                MatrixD.At(i, i, d[i]);

                if (e[i] > 0)
                {
                    MatrixD.At(i, i + 1, e[i]);
                }
                else if (e[i] < 0)
                {
                    MatrixD.At(i, i - 1, e[i]);
                }
            }

            for (var i = 0; i < order; i++)
            {
                VectorEv[i] = new Complex(d[i], e[i]);
            }
        }
開發者ID:koponk,項目名稱:mathnet-numerics,代碼行數:74,代碼來源:UserEvd.cs

示例7: Create

        /// <summary>
        /// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <param name="symmetricity">If it is known whether the matrix is symmetric or not the routine can skip checking it itself.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public static UserEvd Create(Matrix<double> matrix, Symmetricity symmetricity)
        {
            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matricies for eigenvalues and eigenvectors
            var eigenVectors = Matrix<double>.Build.SameAs(matrix, order, order);
            var blockDiagonal = Matrix<double>.Build.SameAs(matrix, order, order);
            var eigenValues = new LinearAlgebra.Complex.DenseVector(order);

            bool isSymmetric;
            switch (symmetricity)
            {
                case Symmetricity.Symmetric:
                case Symmetricity.Hermitian:
                    isSymmetric = true;
                    break;
                case Symmetricity.Asymmetric:
                    isSymmetric = false;
                    break;
                default:
                    isSymmetric = matrix.IsSymmetric();
                    break;
            }

            var d = new double[order];
            var e = new double[order];

            if (isSymmetric)
            {
                matrix.CopyTo(eigenVectors);
                d = eigenVectors.Row(order - 1).ToArray();

                SymmetricTridiagonalize(eigenVectors, d, e, order);
                SymmetricDiagonalize(eigenVectors, d, e, order);
            }
            else
            {
                var matrixH = matrix.ToArray();

                NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order);
                NonsymmetricReduceHessenberToRealSchur(eigenVectors, matrixH, d, e, order);
            }

            for (var i = 0; i < order; i++)
            {
                blockDiagonal.At(i, i, d[i]);

                if (e[i] > 0)
                {
                    blockDiagonal.At(i, i + 1, e[i]);
                }
                else if (e[i] < 0)
                {
                    blockDiagonal.At(i, i - 1, e[i]);
                }
            }

            for (var i = 0; i < order; i++)
            {
                eigenValues[i] = new Complex(d[i], e[i]);
            }

            return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
        }
開發者ID:Jungwon,項目名稱:mathnet-numerics,代碼行數:77,代碼來源:UserEvd.cs

示例8: TestImageDFT

      public void TestImageDFT()
      {
         Image<Gray, float> matA = EmguAssert.LoadImage<Gray, float>("stuff.jpg");

         //The matrix to be convolved with matA, a bluring filter
         Matrix<float> matB = new Matrix<float>(
            new float[,] { 
            {1.0f / 16.0f, 1.0f / 16.0f, 1.0f / 16.0f}, 
            {1.0f / 16.0f, 8.0f / 16.0f, 1.0f / 16.0f}, 
            {1.0f / 16.0f, 1.0f / 16.0f, 1.0f / 16.0f}});

         Image<Gray, float> convolvedImage = new Image<Gray, float>(new Size(matA.Width + matB.Width -1, matA.Height + matB.Height -1));

         Matrix<float> dftA = new Matrix<float>(
            CvInvoke.GetOptimalDFTSize(convolvedImage.Rows),
            CvInvoke.GetOptimalDFTSize(convolvedImage.Cols));
         matA.CopyTo(dftA.GetSubRect(matA.ROI));

         CvInvoke.Dft(dftA, dftA, Emgu.CV.CvEnum.DxtType.Forward, matA.Rows);

         Matrix<float> dftB = new Matrix<float>(dftA.Size);
         matB.CopyTo(dftB.GetSubRect(new Rectangle(Point.Empty, matB.Size)));
         CvInvoke.Dft(dftB, dftB, Emgu.CV.CvEnum.DxtType.Forward, matB.Rows);

         CvInvoke.MulSpectrums(dftA, dftB, dftA, Emgu.CV.CvEnum.MulSpectrumsType.Default, false);
         CvInvoke.Dft(dftA, dftA, Emgu.CV.CvEnum.DxtType.Inverse, convolvedImage.Rows);
         dftA.GetSubRect(new Rectangle(Point.Empty, convolvedImage.Size)).CopyTo(convolvedImage);
      }
開發者ID:neutmute,項目名稱:emgucv,代碼行數:28,代碼來源:AutoTestImage.cs

示例9: ForwardAlgorithm

        private static void ForwardAlgorithm(ref List<Particle> particleListNew, Matrix<float> matRnormalized, Matrix<float> stateMat, Matrix<float> condMat, int tempModel = 5)
        {
            //Matrix<float> condMat = new Matrix<float>(3, 2);
            //condMat[0, 0] = 0.7f;
            //condMat[0, 1] = 0.3f;
            //condMat[1, 0] = 0.7f;
            //condMat[1, 1] = 0.3f;
            //condMat[2, 0] = 0.3f;
            //condMat[2, 1] = 0.7f;

            //stateMat = new Matrix<float>(3, 3);
            //stateMat[0, 0] = 0.8f;
            //stateMat[0, 1] = 0.15f;
            //stateMat[0, 2] = 0.05f;
            //stateMat[1, 0] = 0.2f;
            //stateMat[1, 1] = 0.5f;
            //stateMat[1, 2] = 0.3f;
            //stateMat[2, 0] = 0.05f;
            //stateMat[2, 1] = 0.25f;
            //stateMat[2, 2] = 0.7f;

            int Dcount = 0;
            int Acount = 0;
            for (int i = 0; i < particleListNew.Count; i++)
            {
                if (particleListNew[i].isReady() == false)
                {
                    particleListNew[i].pAlone.Add(0.5f);
                    continue;
                }
                particleListNew[i].pAlone.Add(matRnormalized[i, i]);
                particleListNew[i].pAlone.RemoveAt(0);
                //float obserPA = particleListNew[i].pAlone[particleListNew[i].pAlone.Count - tempModel - 1];

                Matrix<float> obserMat0 = new Matrix<float>(3, 3);
                Matrix<float> obserMat1 = new Matrix<float>(3, 3);
                for (int j = 0; j < 3; j++)
                {
                    obserMat0[j, j] = condMat[j, 0];
                    obserMat1[j, j] = condMat[j, 1];
                }

                Matrix<float> S = new Matrix<float>(3, tempModel + 1);
                S[0, 0] = 0.33f;
                S[1, 0] = 0.33f;
                S[2, 0] = 0.33f;

                for (int j = 0; j < tempModel; j++)
                {
                    Matrix<float> inMat = new Matrix<float>(3, 1);
                    inMat[0, 0] = S[0, j];
                    inMat[1, 0] = S[1, j];
                    inMat[2, 0] = S[2, j];
                    Matrix<float> outMat = new Matrix<float>(3, 1);
                    float obserPA = particleListNew[i].pAlone[particleListNew[i].pAlone.Count - tempModel + j];
                    Matrix<float> obserMat = new Matrix<float>(3, 3);

                    if (obserPA > 0.5)
                        obserMat0.CopyTo(obserMat);
                    else
                        obserMat1.CopyTo(obserMat);

                    outMat = obserMat * stateMat.Transpose() * inMat;
                    outMat = outMat / outMat.Sum;
                    S[0, j + 1] = outMat[0, 0];
                    S[1, j + 1] = outMat[1, 0];
                    S[2, j + 1] = outMat[2, 0];

                }

                double pDEAD = S[0, tempModel];
                double pDYING = S[1, tempModel];
                double pALIVE = S[2, tempModel];
                //for (int j = 0; j < particleListNew.Count; j++)
                //{
                //    if (i == j)
                //        continue;
                //    pG += matRnormalized[i, j] * stateMat[1, particleListNew[i].lastState];
                //}
                //double pA = 1 - pG;
                //swHere.WriteLine("P(A) = {0}\nP(G) = {1}\nsum = {2}\n", pA, pG, pG+pA);

                Matrix<float> pOut = new Matrix<float>(3, 1);
                pOut[0, 0] = (float)pDEAD;
                pOut[1, 0] = (float)pDYING;
                pOut[2, 0] = (float)pALIVE;

                Matrix<float> pResult = new Matrix<float>(4, 1);
                Point maxValP = new Point();
                Point minValP = new Point();
                double minVal, maxVal;

                pOut.MinMax(out minVal, out maxVal, out minValP, out maxValP);

                switch (maxValP.Y)
                {
                    case 0:
                        particleListNew[i].lastState = particleListNew[i].state;
                        particleListNew[i].state = 0;
                        break;
//.........這裏部分代碼省略.........
開發者ID:paolorota,項目名稱:CrowdGroupingFramework,代碼行數:101,代碼來源:Program.cs

示例10: TestImageDFT

        public void TestImageDFT()
        {
            Image<Gray, float> matA = new Image<Gray, float>("stuff.jpg");

             //The matrix to be convoled with matA, a bluring filter
             Matrix<float> matB = new Matrix<float>(
            new float[,] {
            {1.0f/16.0f, 1.0f/16.0f, 1.0f/16.0f},
            {1.0f/16.0f, 8.0f/16.0f, 1.0f/16.0f},
            {1.0f/16.0f, 1.0f/16.0f, 1.0f/16.0f}});

             Image<Gray, float> convolvedImage = new Image<Gray, float>(matA.Size + matB.Size - new Size(1, 1));

             Matrix<float> dftA = new Matrix<float>(
            CvInvoke.cvGetOptimalDFTSize(convolvedImage.Rows),
            CvInvoke.cvGetOptimalDFTSize(convolvedImage.Cols));
             matA.CopyTo(dftA.GetSubRect(matA.ROI));

             CvInvoke.cvDFT(dftA, dftA, Emgu.CV.CvEnum.CV_DXT.CV_DXT_FORWARD, matA.Rows);

             Matrix<float> dftB = new Matrix<float>(dftA.Size);
             matB.CopyTo(dftB.GetSubRect(new Rectangle(Point.Empty, matB.Size)));
             CvInvoke.cvDFT(dftB, dftB, Emgu.CV.CvEnum.CV_DXT.CV_DXT_FORWARD, matB.Rows);

             CvInvoke.cvMulSpectrums(dftA, dftB, dftA, Emgu.CV.CvEnum.MUL_SPECTRUMS_TYPE.DEFAULT);
             CvInvoke.cvDFT(dftA, dftA, Emgu.CV.CvEnum.CV_DXT.CV_DXT_INVERSE, convolvedImage.Rows);
             dftA.GetSubRect(new Rectangle(Point.Empty, convolvedImage.Size)).CopyTo(convolvedImage);
        }
開發者ID:samuto,項目名稱:UnityOpenCV,代碼行數:28,代碼來源:AutoTestImage.cs


注:本文中的System.Matrix.CopyTo方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。