當前位置: 首頁>>代碼示例>>C#>>正文


C# Matrix.MinMax方法代碼示例

本文整理匯總了C#中System.Matrix.MinMax方法的典型用法代碼示例。如果您正苦於以下問題:C# Matrix.MinMax方法的具體用法?C# Matrix.MinMax怎麽用?C# Matrix.MinMax使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在System.Matrix的用法示例。


在下文中一共展示了Matrix.MinMax方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: button3_Click

       // double[,] gR_Magnitude_Mat;
        
        private void button3_Click(object sender, EventArgs e)
        {
          
            int scanFilterNum=0;
            int W = Train_I.Width;
            int H = Train_I.Height;  
            // Real part
            Image<Gray, Double> gR_R = new Image<Gray, Double>(W, H);
            gR_R2 = new double[m, n, 1];
            gF_R_One_back = new float[m * n];
            gF_R_back = new float[m, n];
            gR_R3 = new double[H, W];
            gR_R3_One = new double[H * W];
           // Ouput
            gR_R_Mat = new double[H * W, u * v];
            // Ouput
            gR_R_Picked = new Matrix<double>(H, W);  
            gR_R_Picked_Map = new Matrix<double>(H, W);
            gR_R_One_Picked = new double[H * W];
            gR_R_Picked_CS = new double[H, W];
            // Imag part
            Image<Gray, Double> gR_I = new Image<Gray, Double>(W, H);
            double[, ,] gR_I2 = new double[m, n, 1];
            float[] gF_I_One_back = new float[m * n];
            float[,] gF_I_back = new float[m, n];
            double[,] gR_I3 = new double[H, W];
            double[] gR_I3_One = new double[H*W];
            // Ouput
            double[,] gR_I_Mat = new double[H*W, u*v];
            // Ouput
            Matrix<double> gR_I_Picked = new Matrix<double>(H, W);
            Matrix<double> gR_I_Picked_Map = new Matrix<double>(H, W);
            double[] gR_I_One_Picked = new double[H * W];
            double[,] gR_I_Picked_CS = new double[H, W];
            Matrix<double> t = new Matrix<double>(H, W);
            ///////////////  Filtered and save as gR_R_Mat / gR_I_Mat //////////////
            for (scanFilterNum = 0; scanFilterNum < u * v; scanFilterNum++)
            {
                System.Console.WriteLine(scanFilterNum);
                // Real part
                gF_R_One_back = PickUpFilterFloat(gF_R_Mat.Data, scanFilterNum);    
                gF_R_back = OneToTwoFloat(gF_R_One_back, m, n);  // OK
                ConvolutionKernelF matrix_R = new ConvolutionKernelF(gF_R_back);
                CvInvoke.cvFilter2D(Train_I, gR_R, matrix_R, new Point(0, 0));
                gR_R2 = gR_R.Data;
                gR_R3 = ArrayDownDim(gR_R2);
                gR_R3_One = TwoToOneDouble(gR_R3);
                // Imag part
                gF_I_One_back = PickUpFilterFloat(gF_I_Mat.Data, pickFilterNum);
                gF_I_back = OneToTwoFloat(gF_I_One_back, m, n);
                ConvolutionKernelF matrix_I = new ConvolutionKernelF(gF_I_back);
                CvInvoke.cvFilter2D(Train_I, gR_I, matrix_I, new Point(0, 0));
                gR_I2 = gR_I.Data;
                gR_I3 = ArrayDownDim(gR_I2);
                gR_I3_One = TwoToOneDouble(gR_I3);
                // Put into Mat
                for (int q = 0; q < H * W; q++)
                {
                    gR_R_Mat[q, scanFilterNum] = gR_R3_One[q];
                    gR_I_Mat[q, scanFilterNum] = gR_I3_One[q];

                   // gR_Magnitude_Mat[q, scanFilterNum] = Math.Sqrt((Math.Pow(gR_R3_One[q], 2) + Math.Pow(gR_I3_One[q], 2)));
                 }

             }
            ///////////////  END Filtered and save as gR_R_Mat / gR_I_Mat //////////////

                //////////////////////////////////////////////////////////////////// Test  START/////////////////////////////////////////////////////////////////
                double Imin; double Imax; Point IminLoc; Point ImaxLoc;
                t.Data = gR_R3;
                t.MinMax(out Imin, out Imax, out IminLoc, out ImaxLoc);
                double kkk = ((Imax - Imin) / 255);
                int W_gR_R3 = t.Width;
                int H_gR_R3 = t.Height;
                for (int i = 0; i < H_gR_R3; i++)
                {
                    for (int j = 0; j < W_gR_R3; j++)
                    {
                        t.Data[i, j] = (float)(((t.Data[i, j] - (float)Imax) / kkk) + 255);  // Mapping
                    }
                }
                t.Save(@"D:\Code\gF_R_back.bmp");
                pictureBox7.Image = Image.FromFile(@"D:\Code\gF_R_back.bmp");
                //////////////////////////////////////////////////////////////////// Test END /////////////////////////////////////////////////////////////////
               
               
            ///////////////////////////////  Show Real Part ////////////////////////////////
            pickResultNum = 0;
            gR_R_One_Picked = PickUpResultDouble(gR_R_Mat, pickResultNum);   // Choose the p-th Gabor filtered Result 
            gR_R_Picked_CS = OneToTwoDouble(gR_R_One_Picked,H,W);       
            gR_R_Picked.Data = gR_R_Picked_CS;
            // Show the choose filtered Result, mapping pixel value to [0,255]
            double R_Rmin; double R_Rmax; Point R_RminLoc; Point R_RmaxLoc;
            gR_R_Picked.MinMax(out R_Rmin, out R_Rmax, out R_RminLoc, out R_RmaxLoc);          
            double k = ((R_Rmax - R_Rmin) / 255);
            int H_gR_R_Picked = gR_R_Picked.Rows;
            int W_gR_R_Picked = gR_R_Picked.Cols;
            for (int i = 0; i < H_gR_R_Picked; i++)
//.........這裏部分代碼省略.........
開發者ID:CR-Ko,項目名稱:testFilter,代碼行數:101,代碼來源:Form1.cs

示例2: button5_Click

        private void button5_Click(object sender, EventArgs e)
        {
            //Create a matrix
            Matrix<float> matrix1 = new Matrix<float>(5, 7);
            Byte element = 0;
            //Set the elements
            for (int i = 0; i < 5; i++)
            {
                for (int j = 0; j < 7; j++)
                {
                    matrix1.Data[i, j] = element;
                    element++;
                }
            }
            //Show the result
            matrixBox1.Matrix = matrix1;
            int W = matrix1.Cols;
            int H = matrix1.Rows;
            byte[] b = new byte[H];
           // b = matrix1.GetCol(2);
           // Matrix<float> gg = TakeRow(matrix1, 0);
           //System.Console.WriteLine(gg);
          // byte[,] a = new byte[H,W];
            //a = matrix1.Data; 
           
            double min; double max; Point minLoc; Point maxLoc;
            matrix1.MinMax(out min, out max, out minLoc, out maxLoc);
            label4.Text = "Max = " + max;
            label3.Text = "Min = " + min;

            label6.Text = "W = " + W;
            label5.Text = "H = " + H;
            
            //label7.Text = "a[1,1] = " + a[1,1];
           

        }
開發者ID:CR-Ko,項目名稱:testFilter,代碼行數:37,代碼來源:Form1.cs

示例3: TestMinMax2

      public void TestMinMax2()
      {
         Matrix<Single> matrix = new Matrix<Single> (10, 10);
         matrix.SetValue (5);
         matrix [5, 5] = 10;
         matrix [3, 3] = 0;

         double minVal = 5;
         double maxVal = 5;
         Point minLoc = new Point();
         Point maxLoc = new Point();

         matrix.MinMax (out minVal, out maxVal, out minLoc, out maxLoc);
         EmguAssert.IsTrue(minVal == 0);
         EmguAssert.IsTrue(maxVal == 10);
         EmguAssert.IsTrue(minLoc.Equals(new Point(3, 3)));
         EmguAssert.IsTrue(maxLoc.Equals(new Point(5, 5)));
      }
開發者ID:neutmute,項目名稱:emgucv,代碼行數:18,代碼來源:AutoTestMatrix.cs

示例4: TestMinMax

 public void TestMinMax()
 {
    Matrix<float> mat = new Matrix<float>(30, 40);
    mat.SetRandUniform(new MCvScalar(0), new MCvScalar(255));
    double min, max;
    Point minLoc, maxLoc;
    mat.MinMax(out min, out max, out minLoc, out maxLoc, null);
 }
開發者ID:neutmute,項目名稱:emgucv,代碼行數:8,代碼來源:AutoTestMatrix.cs

示例5: NormalizeMatrix

        public void NormalizeMatrix(ref Matrix<double> m)
        {
            double min;
            double max;
            System.Drawing.Point minPoint;
            System.Drawing.Point maxPoint;
            m.MinMax(out min, out max, out minPoint, out maxPoint);
            max = Math.Abs(max);
            min = Math.Abs(min);
            if (min > max)
            {
                max = min;
            }

            for (int i = 0; i < m.Height; ++i)
            {
                for (int j = 0; j < m.Width; ++j)
                {
                    m.Data[i, j] *= 1 / max;
                }
            }
        }
開發者ID:JimmHub,項目名稱:odoStuff,代碼行數:22,代碼來源:MEMSOrientationCalculator.cs

示例6: AlignedROIs

        /// <summary>
        /// This method returns the 2 ROIs that are more "aligned", i.e. with the
        /// lowest difference in the Y coordinate
        /// It calculates the distances between all the ROIs and selects the appropriate pair
        /// </summary>
        /// <param name="ROIs"></param>
        /// <returns></returns>
        private MCvAvgComp[] AlignedROIs(MCvAvgComp[] ROIs)
        {
            MCvAvgComp[] alignedROIs = new MCvAvgComp[2];
            int N = ROIs.Length;
            Matrix<int> distancesY = new Matrix<int>(N, N);
            distancesY = distancesY.Add(100000);
            double minimum;
            double maximum;
            Point minimumLocation;
            Point maximumLocation;

            for (int i = 0; i < N; i++)
            {
                for (int j = i + 1; j < N; j++)
                {
                    // If both rectangles do not intersect, we add their distance to the matrix
                    // MT: Min distance of 2 x roi.width
                    if (ROIs[j].rect.IntersectsWith(ROIs[i].rect) == false && Math.Abs(ROIs[j].rect.X - ROIs[i].rect.X) > ROIs[j].rect.Width*2.5)
                        distancesY[i, j] = Math.Abs(ROIs[j].rect.Y - ROIs[i].rect.Y);
                }
            }

            distancesY.MinMax(out minimum, out maximum, out minimumLocation, out maximumLocation);

            alignedROIs[0] = ROIs[minimumLocation.X];
            alignedROIs[1] = ROIs[minimumLocation.Y];

            return alignedROIs;
        }
開發者ID:jonbyte,項目名稱:EyeSpark,代碼行數:36,代碼來源:EyeTracker.cs

示例7: ForwardAlgorithm

        private static void ForwardAlgorithm(ref List<Particle> particleListNew, Matrix<float> matRnormalized, Matrix<float> stateMat, Matrix<float> condMat, int tempModel = 5)
        {
            //Matrix<float> condMat = new Matrix<float>(3, 2);
            //condMat[0, 0] = 0.7f;
            //condMat[0, 1] = 0.3f;
            //condMat[1, 0] = 0.7f;
            //condMat[1, 1] = 0.3f;
            //condMat[2, 0] = 0.3f;
            //condMat[2, 1] = 0.7f;

            //stateMat = new Matrix<float>(3, 3);
            //stateMat[0, 0] = 0.8f;
            //stateMat[0, 1] = 0.15f;
            //stateMat[0, 2] = 0.05f;
            //stateMat[1, 0] = 0.2f;
            //stateMat[1, 1] = 0.5f;
            //stateMat[1, 2] = 0.3f;
            //stateMat[2, 0] = 0.05f;
            //stateMat[2, 1] = 0.25f;
            //stateMat[2, 2] = 0.7f;

            int Dcount = 0;
            int Acount = 0;
            for (int i = 0; i < particleListNew.Count; i++)
            {
                if (particleListNew[i].isReady() == false)
                {
                    particleListNew[i].pAlone.Add(0.5f);
                    continue;
                }
                particleListNew[i].pAlone.Add(matRnormalized[i, i]);
                particleListNew[i].pAlone.RemoveAt(0);
                //float obserPA = particleListNew[i].pAlone[particleListNew[i].pAlone.Count - tempModel - 1];

                Matrix<float> obserMat0 = new Matrix<float>(3, 3);
                Matrix<float> obserMat1 = new Matrix<float>(3, 3);
                for (int j = 0; j < 3; j++)
                {
                    obserMat0[j, j] = condMat[j, 0];
                    obserMat1[j, j] = condMat[j, 1];
                }

                Matrix<float> S = new Matrix<float>(3, tempModel + 1);
                S[0, 0] = 0.33f;
                S[1, 0] = 0.33f;
                S[2, 0] = 0.33f;

                for (int j = 0; j < tempModel; j++)
                {
                    Matrix<float> inMat = new Matrix<float>(3, 1);
                    inMat[0, 0] = S[0, j];
                    inMat[1, 0] = S[1, j];
                    inMat[2, 0] = S[2, j];
                    Matrix<float> outMat = new Matrix<float>(3, 1);
                    float obserPA = particleListNew[i].pAlone[particleListNew[i].pAlone.Count - tempModel + j];
                    Matrix<float> obserMat = new Matrix<float>(3, 3);

                    if (obserPA > 0.5)
                        obserMat0.CopyTo(obserMat);
                    else
                        obserMat1.CopyTo(obserMat);

                    outMat = obserMat * stateMat.Transpose() * inMat;
                    outMat = outMat / outMat.Sum;
                    S[0, j + 1] = outMat[0, 0];
                    S[1, j + 1] = outMat[1, 0];
                    S[2, j + 1] = outMat[2, 0];

                }

                double pDEAD = S[0, tempModel];
                double pDYING = S[1, tempModel];
                double pALIVE = S[2, tempModel];
                //for (int j = 0; j < particleListNew.Count; j++)
                //{
                //    if (i == j)
                //        continue;
                //    pG += matRnormalized[i, j] * stateMat[1, particleListNew[i].lastState];
                //}
                //double pA = 1 - pG;
                //swHere.WriteLine("P(A) = {0}\nP(G) = {1}\nsum = {2}\n", pA, pG, pG+pA);

                Matrix<float> pOut = new Matrix<float>(3, 1);
                pOut[0, 0] = (float)pDEAD;
                pOut[1, 0] = (float)pDYING;
                pOut[2, 0] = (float)pALIVE;

                Matrix<float> pResult = new Matrix<float>(4, 1);
                Point maxValP = new Point();
                Point minValP = new Point();
                double minVal, maxVal;

                pOut.MinMax(out minVal, out maxVal, out minValP, out maxValP);

                switch (maxValP.Y)
                {
                    case 0:
                        particleListNew[i].lastState = particleListNew[i].state;
                        particleListNew[i].state = 0;
                        break;
//.........這裏部分代碼省略.........
開發者ID:paolorota,項目名稱:CrowdGroupingFramework,代碼行數:101,代碼來源:Program.cs


注:本文中的System.Matrix.MinMax方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。