本文整理匯總了C#中System.Matrix.Determinant方法的典型用法代碼示例。如果您正苦於以下問題:C# Matrix.Determinant方法的具體用法?C# Matrix.Determinant怎麽用?C# Matrix.Determinant使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Matrix
的用法示例。
在下文中一共展示了Matrix.Determinant方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: DetTest
public void DetTest()
{
var matrix = new Matrix(new[]
{
new Vector(new[] { new Number(1), new Number(-2), new Number(3) }),
new Vector(new[] { new Number(4), new Number(0), new Number(6) }),
new Vector(new[] { new Number(-7), new Number(8), new Number(9) })
});
var det = matrix.Determinant();
Assert.AreEqual(204, det);
}
示例2: Simple
public void Simple()
{
var matrix = new Matrix(3, 3);
// [ 3, 1, 8 ]
// [ 2, -5, 4 ]
// [-1, 6, -2 ]
// Determinant = 14
matrix[0, 0] = 3;
matrix[0, 1] = 1;
matrix[0, 2] = 8;
matrix[1, 0] = 2;
matrix[1, 1] = -5;
matrix[1, 2] = 4;
matrix[2, 0] = -1;
matrix[2, 1] = 6;
matrix[2, 2] = -2;
Assert.AreEqual(14, matrix.Determinant(), 0.000000001);
}
示例3: Density
/// <summary>
/// Evaluates the probability density function for the Wishart distribution.
/// </summary>
/// <param name="x">The matrix at which to evaluate the density at.</param>
/// <exception cref="ArgumentOutOfRangeException">If the argument does not have the same dimensions as the scale matrix.</exception>
/// <returns>the density at <paramref name="x"/>.</returns>
public double Density(Matrix<double> x)
{
var p = _s.RowCount;
if (x.RowCount != p || x.ColumnCount != p)
{
throw Matrix.DimensionsDontMatch<ArgumentOutOfRangeException>(x, _s, "x");
}
var dX = x.Determinant();
var siX = _chol.Solve(x);
// Compute the multivariate Gamma function.
var gp = Math.Pow(Constants.Pi, p * (p - 1.0) / 4.0);
for (var j = 1; j <= p; j++)
{
gp *= SpecialFunctions.Gamma((_nu + 1.0 - j) / 2.0);
}
return Math.Pow(dX, (_nu - p - 1.0) / 2.0)
* Math.Exp(-0.5 * siX.Trace())
/ Math.Pow(2.0, _nu * p / 2.0)
/ Math.Pow(_chol.Determinant, _nu / 2.0)
/ gp;
}
示例4: Matrix_DeterminantCalculatedCorrectly
public void Matrix_DeterminantCalculatedCorrectly()
{
var matrix = new Matrix(
3, 2, 0, 1,
4, 0, 1, 2,
3, 0, 2, 1,
9, 2, 3, 1);
var determinant = matrix.Determinant();
TheResultingValue(determinant)
.WithinDelta(0.1f).ShouldBe(24.0f);
}
示例5: Determinant
public void Determinant()
{
Matrix matrix = new Matrix(new double[][] { new double[] { 1.0, 2.0 }, new double[] { 3.0, 4.0 } });
double result = matrix.Determinant();
Assert.AreEqual((1.0 * 4.0) - (2.0 * 3.0), result);
}
示例6: DeterminantRaiseException
public void DeterminantRaiseException()
{
Matrix matrix = new Matrix(new double[][] { new double[] { 1.0, 2.0 }, new double[] { 3.0, 4.0 }, new double[] { 5.0, 6.0 } });
try
{
matrix.Determinant();
Assert.Fail();
}
catch (Exception ex)
{
Assert.IsInstanceOfType(ex, typeof(InvalidOperationException));
Assert.AreEqual("Matrix is not square", ex.Message);
}
}
示例7: FindMaxTransformedSize
/// <summary>
/// Given the transform to be applied to an unknown rectangle, this method finds (in axis-aligned local space)
/// the largest rectangle that, after transform, fits within <paramref name="localBounds"/>.
/// Largest rectangle means rectangle of the greatest area in local space (although maximal area in local space
/// implies maximal area in transform space).
/// </summary>
/// <param name="transform">Transformation matrix.</param>
/// <param name="localBounds">The bounds in local space where the returned size fits when transformed
/// via the given <paramref name="transform"/>.</param>
/// <returns>The dimensions, in local space, of the maximal area rectangle found.</returns>
private static SizeF FindMaxTransformedSize(Matrix transform, SizeF localBounds)
{
// X (width) and Y (height) constraints for axis-aligned bounding box in dest. space
float xConstr = localBounds.Width;
float yConstr = localBounds.Height;
// Avoid doing math on an empty rect
if (IsNear(xConstr, 0) || IsNear(yConstr, 0))
return new SizeF(0, 0);
bool xConstrInfinite = float.IsNaN(xConstr);
bool yConstrInfinite = float.IsNaN(yConstr);
if (xConstrInfinite && yConstrInfinite)
return new SizeF(float.NaN, float.NaN);
if (xConstrInfinite) // Assume square for one-dimensional constraint
xConstr = yConstr;
else if (yConstrInfinite)
yConstr = xConstr;
// We only deal with nonsingular matrices here. The nonsingular matrix is the one
// that has inverse (determinant != 0).
if (transform.Determinant() == 0)
return new SizeF(0, 0);
float a = transform.M11;
float b = transform.M12;
float c = transform.M21;
float d = transform.M22;
// Result width and height (in child/local space)
float w;
float h;
// Because we are dealing with nonsingular transform matrices, we have (b==0 || c==0) XOR (a==0 || d==0)
if (IsNear(b, 0) || IsNear(c, 0))
{ // (b == 0 || c == 0) ==> a != 0 && d != 0
float yCoverD = yConstrInfinite ? float.PositiveInfinity : Math.Abs(yConstr / d);
float xCoverA = xConstrInfinite ? float.PositiveInfinity : Math.Abs(xConstr / a);
if (IsNear(b, 0))
{
if (IsNear(c, 0))
{ // b == 0, c == 0, a != 0, d != 0
// No constraint relation; use maximal width and height
h = yCoverD;
w = xCoverA;
}
else
{ // b == 0, a != 0, c != 0, d != 0
// Maximizing under line (hIntercept=xConstr/c, wIntercept=xConstr/a)
// BUT we still have constraint: h <= yConstr/d
h = Math.Min(0.5f * Math.Abs(xConstr / c), yCoverD);
w = xCoverA - ((c * h) / a);
}
}
else
{ // c == 0, a != 0, b != 0, d != 0
// Maximizing under line (hIntercept=yConstr/d, wIntercept=yConstr/b)
// BUT we still have constraint: w <= xConstr/a
w = Math.Min(0.5f * Math.Abs(yConstr / b), xCoverA);
h = yCoverD - ((b * w) / d);
}
}
else if (IsNear(a, 0) || IsNear(d, 0))
{ // (a == 0 || d == 0) ==> b != 0 && c != 0
float yCoverB = Math.Abs(yConstr / b);
float xCoverC = Math.Abs(xConstr / c);
if (IsNear(a, 0))
{
if (IsNear(d, 0))
{ // a == 0, d == 0, b != 0, c != 0
// No constraint relation; use maximal width and height
h = xCoverC;
w = yCoverB;
}
else
{ // a == 0, b != 0, c != 0, d != 0
// Maximizing under line (hIntercept=yConstr/d, wIntercept=yConstr/b)
// BUT we still have constraint: h <= xConstr/c
h = Math.Min(0.5f * Math.Abs(yConstr / d), xCoverC);
w = yCoverB - ((d * h) / b);
}
//.........這裏部分代碼省略.........
示例8: CalculateMaximumAvailableSizeBeforeLayoutTransform
/// <summary>
/// Given a pair of dimensions, this method calculates the size of the largest rectangle that will fit within
/// those dimensions after having the specified transformation applied to it.
/// </summary>
/// <param name="xmax">The available width.</param>
/// <param name="ymax">The available height.</param>
/// <param name="transform">The transformation matrix to apply.</param>
/// <returns>The size of the largest rectangle that will still fit within the available space after the specified transform is applied.</returns>
private static Size2D CalculateMaximumAvailableSizeBeforeLayoutTransform(Double xmax, Double ymax, Matrix transform)
{
/* When using layout transforms, it's possible for an element to produce a desired size which, after the transform
* is applied, will cause the element to lie outside of its maximum available layout area. To address this problem,
* we need to shrink the available size that is passed into MeasureCore() such that, even if the element is as big
* as it possibly can be, its post-transform bounds will still lie within the available layout area.
*
* To that end, we need to do a bit of calculus. Given the true maximum area (A_true) and a transformation
* matrix (M_transform), we need to calculate the largest possible rectangle that will fit within A_true
* after it has been subjected to M_transform. This will be the area that we pass into MeasureCore().
*
* For simplicity's sake, consider the case of a rotation transform. Rotating a rectangle will cause its x-dimension
* to point partially along both the x- and y-axes of the untransformed space. If we gradually make the rectangle wider,
* it will eventually reach a point where its size along the untransformed x-axis will exceed our maximum width, and another
* point where its size along the untransformed y-axis will exceed our maximum width. The smallest of these two widths
* is the largest possible width of the transformed rectangle. We can do likewise to constrain the rectangle's height;
* the biggest possible rectangle will have a width and height somewhere below the values established by these constraints.
*
* We can use trigonometry to establish that there is a simple linear relationship between the width of the transformed
* rectangle and its dimensions along the untransformed x- and y-axes, such that w / sin(theta) = h / cos(theta). We can
* use this to graph a pair of lines representing our transformed rectangle's width and height. We can then take the
* first derivative in order to find the biggest rectangle that will fit under the lines.
*
* Let a = w / sin(theta) and b = h / cos(theta).
*
* The line formed by intercepts a and b forms a right triangle with the axes, so the total area beneath it is .5ab.
* Given that we are trying to find the area of a rectangle beneath this line with dimensions x and y, we can equivalently
* say that the triangle's total area is .5ay + .5bx. Solving for y, we find that y = (ab - bx) / a. We can then plug
* this into the equation for the area of a rectangle, A = xy, to get A = x((ab - bx) / a). Taking the first derivative
* and solving for x, we find that x = a / 2. Doing the same for y reveals, likewise, that y = b / 2. Therefore, the
* biggest rectangle has dimensions halfway between the intercepts that form the line. */
if (Double.IsInfinity(xmax) && Double.IsInfinity(ymax))
return new Size2D(Double.PositiveInfinity, Double.PositiveInfinity);
xmax = Double.IsInfinity(xmax) ? ymax : xmax;
ymax = Double.IsInfinity(ymax) ? xmax : ymax;
if (MathUtil.IsApproximatelyZero(xmax) || MathUtil.IsApproximatelyZero(ymax) || MathUtil.IsApproximatelyZero(transform.Determinant()))
return Size2D.Zero;
var m11 = transform.M11;
var m21 = transform.M21;
var m12 = transform.M12;
var m22 = transform.M22;
var w = 0.0;
var h = 0.0;
var xConstraintInterceptW = MathUtil.IsApproximatelyZero(m11) ? Double.NaN : Math.Abs(xmax / m11);
var xConstraintInterceptH = MathUtil.IsApproximatelyZero(m12) ? Double.NaN : Math.Abs(xmax / m12);
var yConstraintInterceptW = MathUtil.IsApproximatelyZero(m21) ? Double.NaN : Math.Abs(ymax / m21);
var yConstraintInterceptH = MathUtil.IsApproximatelyZero(m22) ? Double.NaN : Math.Abs(ymax / m22);
var xConstraintIsHorz = Double.IsNaN(xConstraintInterceptW);
var xConstraintIsVert = Double.IsNaN(xConstraintInterceptH);
var xConstraintIsHorzOrVert = xConstraintIsHorz || xConstraintIsVert;
var yConstraintIsHorz = Double.IsNaN(yConstraintInterceptW);
var yConstraintIsVert = Double.IsNaN(yConstraintInterceptH);
var yConstraintIsHorzOrVert = yConstraintIsHorz || yConstraintIsVert;
/* Below, we handle special cases where one or both of the constraint lines is vertical or horizontal due to zeroes in
* the transformation matrix. This causes some of our intercepts to go undefined, which means their constraint lines
* don't constrain one (or either) of our dimensions. */
if (xConstraintIsHorzOrVert && yConstraintIsHorzOrVert)
{
w = xConstraintIsVert ? xConstraintInterceptW : yConstraintInterceptW;
h = xConstraintIsVert ? yConstraintInterceptH : xConstraintInterceptH;
return new Size2D(w, h);
}
if (xConstraintIsVert || yConstraintIsVert)
{
var slope = xConstraintIsVert ? m21 / m22 : m11 / m12;
w = xConstraintIsVert ? Math.Min(yConstraintInterceptW * 0.5, xConstraintInterceptW) : Math.Min(xConstraintInterceptW * 0.5, yConstraintInterceptW);
h = (xConstraintIsVert ? yConstraintInterceptH : xConstraintInterceptH) - (slope * w);
return new Size2D(w, h);
}
if (xConstraintIsHorz || yConstraintIsHorz)
{
var slope = xConstraintIsHorz ? m12 / m11 : m22 / m21;
h = xConstraintIsHorz ? Math.Min(yConstraintInterceptH * 0.5, xConstraintInterceptH) : Math.Min(xConstraintInterceptH * 0.5, yConstraintInterceptH);
w = (xConstraintIsHorz ? yConstraintInterceptW : xConstraintInterceptW) - (slope * h);
return new Size2D(w, h);
}
/* If both constraint lines have a well-defined, non-zero slope, then the dimensions of the maximized rectangle lie halfway between the smaller line's
* intercepts, as we established above using the first derivative.
*
//.........這裏部分代碼省略.........
示例9: Simple2
public void Simple2()
{
var matrix = new Matrix(4, 4);
// [ 1, 2, 3, 4 ]
// [ 5, 6, 7, 8 ]
// [ 2, 6, 4, 8 ]
// [ 3, 1, 1, 2 ]
// Determinant = 72
matrix[0, 0] = 1;
matrix[0, 1] = 2;
matrix[0, 2] = 3;
matrix[0, 3] = 4;
matrix[1, 0] = 5;
matrix[1, 1] = 6;
matrix[1, 2] = 7;
matrix[1, 3] = 8;
matrix[2, 0] = 2;
matrix[2, 1] = 6;
matrix[2, 2] = 4;
matrix[2, 3] = 8;
matrix[3, 0] = 3;
matrix[3, 1] = 1;
matrix[3, 2] = 1;
matrix[3, 3] = 2;
Assert.AreEqual(matrix.Determinant(), 72, 0.000000001);
}
示例10: ExceptionNotSquare
public void ExceptionNotSquare()
{
var matrix = new Matrix(2, 3);
matrix.Determinant();
}
示例11: DeterminantTest1
public void DeterminantTest1()
{
double[,] data = null; // TODO: инициализация подходящего значения
Matrix target = new Matrix(data); // TODO: инициализация подходящего значения
double expected = 0F; // TODO: инициализация подходящего значения
double actual;
actual = target.Determinant();
Assert.AreEqual(expected, actual);
Assert.Inconclusive("Проверьте правильность этого метода теста.");
}
示例12: ScreenRelToWorld
private static Vector3 ScreenRelToWorld(Matrix mView, Vector2 screenCoordsRel)
{
mView.Transpose();
var vForward = mView.Row4;
var vRight = mView.Row2;
var vUpward = mView.Row3;
var d = 1 - vForward.W;
var h = screenCoordsRel.X - vRight.W;
var s = -screenCoordsRel.Y - vUpward.W;
var m = new Matrix(vForward.X, vForward.Y, vForward.Z, 0,
vRight.X, vRight.Y, vRight.Z, 0,
vUpward.X, vUpward.Y, vUpward.Z, 0,
0, 0, 0, 1);
var det = m.Determinant();
var mx = new Matrix(d, vForward.Y, vForward.Z, 0,
h, vRight.Y, vRight.Z, 0,
s, vUpward.Y, vUpward.Z, 0,
0, 0, 0, 1);
var detx = mx.Determinant();
var my = new Matrix(vForward.X, d, vForward.Z, 0,
vRight.X, h, vRight.Z, 0,
vUpward.X, s, vUpward.Z, 0,
0, 0, 0, 1);
var dety = my.Determinant();
var mz = new Matrix(vForward.X, vForward.Y, d, 0,
vRight.X, vRight.Y, h, 0,
vUpward.X, vUpward.Y, s, 0,
0, 0, 0, 1);
var detz = mz.Determinant();
var epsilon = 0.0000001;
return Math.Abs(det) < epsilon ? new Vector3() : new Vector3(detx / det, dety / det, detz / det);
}
示例13: Test
public int Test(Matrix matrix1, Matrix matrix2, double[] means1, double[] means2, double[] vector)
{
var m1 = new Matrix(matrix1);
var m2 = new Matrix(matrix2);
var matrix_means1 = new Vector(means1);
var matrix_means2 = new Vector(means2);
var matrix_vector = new Vector(vector);
// Calculate A B C
var A = m2.Inverse() - m1.Inverse();
var B = 2 * (Matrix.Multiply(matrix_means1.ToMatrix().Transpose(), m1.Inverse()) - Matrix.Multiply(matrix_means2.ToMatrix().Transpose(), m2.Inverse()));
var C = (Matrix.Multiply(Matrix.Multiply(matrix_means2.ToMatrix().Transpose(), m2.Inverse()), matrix_means2.ToMatrix())).Determinant() - (Matrix.Multiply(Matrix.Multiply(matrix_means1.ToMatrix().Transpose(), m1.Inverse()), matrix_means1.ToMatrix()).Determinant() - 2 * (Math.Log10(m1.Determinant() / m2.Determinant())));
var result = Matrix.Multiply(Matrix.Multiply(matrix_vector.ToMatrix().Transpose(), A), matrix_vector.ToMatrix()).Determinant() + B[0, 0] * matrix_vector[0] + B[0, 2] * matrix_vector[2] + B[0, 2] * matrix_vector[2] + C;
if (result > 0)
{
return 1;
}
return 2;
}
示例14: DrawDiscreminant
public void DrawDiscreminant(Panel p, Matrix matrix1, Matrix matrix2, double[] means1, double[] means2, int x, int y)
{
var m1 = new Matrix(matrix1);
var m2 = new Matrix(matrix2);
var matrix_means1 = new Vector(means1);
var matrix_means2 = new Vector(means2);
// Calculate A B C
var A = m2.Inverse() - m1.Inverse();
var B = 2 * (Matrix.Multiply(matrix_means1.ToMatrix().Transpose(), m1.Inverse()) - Matrix.Multiply(matrix_means2.ToMatrix().Transpose(), m2.Inverse()));
var C = (Matrix.Multiply(Matrix.Multiply(matrix_means2.ToMatrix().Transpose(), m2.Inverse()), matrix_means2.ToMatrix())).Determinant() - (Matrix.Multiply(Matrix.Multiply(matrix_means1.ToMatrix().Transpose(), m1.Inverse()), matrix_means1.ToMatrix()).Determinant() - 2 * (Math.Log10(m1.Determinant() / m2.Determinant())));
var a11 = A[x, x];
var a12 = A[x, y];
var a21 = A[y, x];
var a22 = A[y, y];
var b1 = B[0, x];
var b2 = B[0, y];
for (double i = -20; i < 20; i = i + 0.1)
{
var quad = a22;
var line = a12 * i + a21 * i + b2;
var cons = C + b1 * i + a11 * i * i;
if ((line * line - 4 * quad * cons) >= 0)
{
try
{
if (quad != 0)
{
var j = (-line + Math.Sqrt(line * line - 4 * quad * cons)) / (2 * quad);
Draw(p, Color.Black, i, j);
j = (-line - Math.Sqrt(line * line - 4 * quad * cons)) / (2 * quad);
Draw(p, Color.Black, i, j);
}
else if (line != 0)
{
var j = -cons / line;
Draw(p, Color.Black, i, j);
}
}
catch(Exception)
{ }
}
}
}