本文整理匯總了C#中System.Matrix.GetValue方法的典型用法代碼示例。如果您正苦於以下問題:C# Matrix.GetValue方法的具體用法?C# Matrix.GetValue怎麽用?C# Matrix.GetValue使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Matrix
的用法示例。
在下文中一共展示了Matrix.GetValue方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Test2
public static void Test2()
{
const uint MARGIN = 1;
Matrix mA = new Matrix(2 + MARGIN, 3 + MARGIN);
Matrix mB = new Matrix(3, 2);
Matrix mC = new Matrix(2, 2);
mA.SetValue(0 + MARGIN, 0 + MARGIN, 0.11);
mA.SetValue(0 + MARGIN, 1 + MARGIN, 0.12);
mA.SetValue(0 + MARGIN, 2 + MARGIN, 0.13);
mA.SetValue(1 + MARGIN, 0 + MARGIN, 0.21);
mA.SetValue(1 + MARGIN, 1 + MARGIN, 0.22);
mA.SetValue(1 + MARGIN, 2 + MARGIN, 0.23);
mB.SetValue(0, 0, 1011);
mB.SetValue(0, 1, 1012);
mB.SetValue(1, 0, 1021);
mB.SetValue(1, 1, 1022);
mB.SetValue(2, 0, 1031);
mB.SetValue(2, 1, 1032);
MatrixView mViewA = new MatrixView(mA, MARGIN, MARGIN, mA.Columns - MARGIN, mA.Rows - MARGIN);
MatrixView mViewB = new MatrixView(mB, 0, 0, mB.Columns, mB.Rows);
MatrixView mViewC = new MatrixView(mC, 0, 0, mC.Columns, mC.Rows);
Blas.DGemm(Blas.TransposeType.NoTranspose, Blas.TransposeType.NoTranspose, 1.0, mViewA, mViewB, 0.0, ref mViewC);
Console.WriteLine(mC.GetValue(0, 0) + " , " + mC.GetValue(0, 1));
Console.WriteLine(mC.GetValue(1, 0) + " , " + mC.GetValue(1, 1));
}
示例2: Test
public static void Test()
{
Matrix mA = new Matrix(2, 3);
Matrix mB = new Matrix(3, 2);
Matrix mC = new Matrix(2, 2);
mA.SetValue(0, 0, 0.11);
mA.SetValue(0, 1, 0.12);
mA.SetValue(0, 2, 0.13);
mA.SetValue(1, 0, 0.21);
mA.SetValue(1, 1, 0.22);
mA.SetValue(1, 2, 0.23);
mB.SetValue(0, 0, 1011);
mB.SetValue(0, 1, 1012);
mB.SetValue(1, 0, 1021);
mB.SetValue(1, 1, 1022);
mB.SetValue(2, 0, 1031);
mB.SetValue(2, 1, 1032);
Blas.DGemm(Blas.TransposeType.NoTranspose, Blas.TransposeType.NoTranspose, 1.0, mA, mB, 0.0, ref mC);
Console.WriteLine(mC.GetValue(0, 0) + " , " + mC.GetValue(0, 1));
Console.WriteLine(mC.GetValue(1, 0) + " , " + mC.GetValue(1, 1));
}
示例3: Decompose
/// <summary>
/// Decomposes the specified matrix using a LU decomposition.
/// </summary>
/// <param name="matrix">The matrix to decompose.</param>
public void Decompose(Matrix matrix)
{
LU = matrix.Clone();
pivots = new int[LU.Rows];
for (var i = 0; i < LU.Rows; i++)
{
pivots[i] = i;
}
pivotSign = 1;
var column = new double[LU.Rows];
for (var j = 0; j < LU.Columns; j++)
{
for (var i = 0; i < LU.Rows; i++)
{
column[i] = LU.GetValue(i, j);
}
// Apply previous transformations.
for (var i = 0; i < LU.Rows; i++)
{
// Most of the time is spent in the following dot product.
var kmax = Math.Min(i, j);
var s = 0.0;
for (var k = 0; k < kmax; k++)
{
s += LU.GetValue(i, k) * column[k];
}
LU.SetValue(i, j, column[i] - s);
column[i] -= s;
}
// Find pivot and exchange if necessary.
var p = j;
for (var i = j + 1; i < LU.Rows; i++)
{
if (Math.Abs(column[i]) > Math.Abs(column[p]))
{
p = i;
}
}
if (p != j)
{
for (var k = 0; k < LU.Columns; k++)
{
var t = LU[p, k];
LU.SetValue(p, k, LU[j, k]);
LU.SetValue(j, k, t);
}
Swapper.Swap(pivots, p, j);
pivotSign = -pivotSign;
}
// Compute multipliers.
if ((j < LU.Rows) && (LU.GetValue(j, j) != 0.0))
{
for (var i = j + 1; i < LU.Rows; i++)
{
LU.SetValue(i, j, LU.GetValue(i, j) / LU.GetValue(j, j));
}
}
}
}
示例4: Solve
/// <summary>
/// /** Solve A*X = B
/// </summary>
/// <param name="right">A Matrix with as many rows as A and any number of columns.</param>
/// <returns>X so that L*L'*X = B</returns>
/// <exception cref="ArgumentNullException"><paramref name="right"/> is a null reference.</exception>
/// <exception cref="ArgumentException"><paramref name="right"/> is not square.</exception>
public Matrix Solve(Matrix right)
{
Guard.ArgumentNotNull(right, "b");
if ((right.Columns != 1) || (right.Rows != dimension))
{
throw new ArgumentException(haveNonMatchingDimensions);
}
var x = new double[dimension];
int k;
double sum;
var m = new double[dimension];
for (var j = 0; j < dimension; j++)
{
m[j] = right.GetValue(j, 0);
}
for (var i = 0; i < dimension; i++)
{
// Solve <c>L * y = b</c>, storing y in x.
for (sum = m[i], k = i - 1; k >= 0; k--)
{
sum -= LeftFactorMatrix[i, k] * x[k];
}
x[i] = sum / LeftFactorMatrix[i, i];
}
for (var i = dimension - 1; i >= 0; i--)
{
// Solve L^T * x = y.
for (sum = x[i], k = i + 1; k < dimension; k++)
{
sum -= LeftFactorMatrix[k, i] * x[k];
}
x[i] = sum / LeftFactorMatrix[i, i];
}
return new Matrix(dimension, 1, x);
}
示例5: TestInverse
public static void TestInverse()
{
//----------------------
//| 0.18 | 0.41 | 0.14 |
//| 0.60 | 0.24 | 0.30 |
//| 0.57 | 0.99 | 0.97 |
//----------------------
Matrix matrix = new Matrix(3, 3);
Matrix matrix2 = new Matrix(4, 4);
matrix.SetValue(0, 0, 0.18);
matrix.SetValue(0, 1, 0.41);
matrix.SetValue(0, 2, 0.14);
matrix.SetValue(1, 0, 0.60);
matrix.SetValue(1, 1, 0.24);
matrix.SetValue(1, 2, 0.30);
matrix.SetValue(2, 0, 0.57);
matrix.SetValue(2, 1, 0.99);
matrix.SetValue(2, 2, 0.97);
double[,] test = matrix.ToArray();
for (uint i = 0; i < matrix.Columns; i++)
{
for (uint j = 0; j < matrix.Rows; j++)
{
matrix2.SetValue(i + 1, j + 1, matrix.GetValue(i, j));
}
}
//LU分解による方法
Matrix inv = new Matrix(3, 3);
int sig;
Permutation perm = new Permutation(3);
perm.Initialize();
LinearAlgebra.LUDecomposition(ref matrix, ref perm, out sig);
LinearAlgebra.LUInvert(matrix, perm, ref inv);
for (uint i = 0; i < inv.Columns; i++)
{
for (uint j = 0; j < inv.Rows; j++)
{
Console.Write(inv.GetValue(i, j).ToString("F4").PadLeft(8) + " | ");
}
Console.WriteLine();
}
Console.WriteLine();
//部分行列のテスト
perm.Initialize();
Matrix inv2 = new Matrix(4, 4);
MatrixView mView = new MatrixView(matrix2, 1, 1, 3, 3);
MatrixView mViewINV = new MatrixView(inv2, 0, 1, 3, 3);
LinearAlgebra.LUDecomposition(ref mView, ref perm, out sig);
LinearAlgebra.LUInvert(mView, perm, ref mViewINV);
for (uint i = 0; i < mViewINV.ColumnSize; i++)
{
for (uint j = 0; j < mViewINV.RowSize; j++)
{
Console.Write(mViewINV.GetValue(i, j).ToString("F4").PadLeft(8) + " | ");
}
Console.WriteLine();
}
Console.WriteLine();
for (uint i = 0; i < inv2.Columns; i++)
{
for (uint j = 0; j < inv2.Rows; j++)
{
Console.Write(inv2.GetValue(i, j).ToString("F4").PadLeft(8) + " | ");
}
Console.WriteLine();
}
Console.Read();
}
示例6: Decompose
/// <summary>
/// Decomposes the specified matrix, using a QR decomposition.
/// </summary>
/// <param name="matrix">The matrix to decompose.</param>
public void Decompose(Matrix matrix)
{
qr = matrix.Clone();
diagonal = new double[qr.Columns];
// Main loop.
for (var k = 0; k < qr.Columns; k++)
{
// Compute 2-norm of k-th column without under/overflow.
double nrm = 0;
for (var i = k; i < qr.Rows; i++)
{
nrm = MathAlgorithms.Hypotenuse(nrm, qr[i, k]);
}
if (nrm != 0.0)
{
// Form k-th Householder vector.
if (qr.GetValue(k, k) < 0)
{
nrm = -nrm;
}
for (var i = k; i < qr.Rows; i++)
{
qr.SetValue(i, k, qr.GetValue(i, k) / nrm);
}
qr.SetValue(k, k, qr.GetValue(k, k) + 1.0);
// Apply transformation to remaining columns.
for (var j = k + 1; j < qr.Columns; j++)
{
var s = 0.0;
for (var i = k; i < qr.Rows; i++)
{
s += qr.GetValue(i, k) * qr.GetValue(i, j);
}
s = (-s) / qr.GetValue(k, k);
for (var i = k; i < qr.Rows; i++)
{
qr.SetValue(i, j, qr.GetValue(i, j) + (s * qr.GetValue(i, k)));
}
}
}
diagonal[k] = -nrm;
}
}