本文整理匯總了C#中System.Matrix.CloneTo方法的典型用法代碼示例。如果您正苦於以下問題:C# Matrix.CloneTo方法的具體用法?C# Matrix.CloneTo怎麽用?C# Matrix.CloneTo使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Matrix
的用法示例。
在下文中一共展示了Matrix.CloneTo方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: SimulateNAPTStageTwo
//.........這裏部分代碼省略.........
{
for (int j = 0; j < rowColSize; j++)
{
if (i == j || FA1[i, j] > 0)
PAN2[i, j] = 0;
else
PAN2[i, j] = 1 - SRG2[i, j];
}
}
// 8. Generate a Utility for Potential Ally matrix UA21 = PAN2 * UA11. Calulate the max row for UA21
/*
Matrix UA21 = new Matrix(rowColSize, rowColSize);
for (int i = 0; i < rowColSize; i++)
{
for (int j = 0; j < rowColSize; j++)
{
if (i != j)
UA21[i, j] = PAN2[i, j] * UA11[i, j];
else
UA21[i, j] = 0;
}
}
*/
Matrix UA21 = new Matrix(UA11);
// 9. Calculate the Potential Ally Capabilities matrix CUA21
// method from excel sheet
Matrix CUA21 = new Matrix(rowColSize, rowColSize);
for (int i = 0; i < rowColSize; i++)
{
for (int j = 0; j < rowColSize; j++)
{
if (i != j && UA21[i, j] == UA21.GetMaxInRow(i))
CUA21[i, j] = CAP[j, j];
else
CUA21[i, j] = 0;
}
}
Matrix DP2 = new Matrix(rowColSize, rowColSize);
Matrix FA2 = new Matrix(rowColSize, rowColSize);
NAPTStageOneHelper1(CAP, SRG2, SRGC20, PAN2, UA21, CUA21, AOC20, ref DP2, ref FA2, stage, AC20);
if (stage >= 10)
FA2.NetworkId = int.Parse(networkid + "" + stage);
else
FA2.NetworkId = int.Parse(networkid + "0" + stage);
for (int i = 0; i < FA1.Rows; i++)
{
FA2.RowLabels[i] = FA1.RowLabels[i];
FA2.ColLabels[i] = FA1.ColLabels[i];
}
// write FA2 to matrix file
// Set network ID and row and col labels first
if (!EADyadic)
MatrixWriter.WriteMatrixToMatrixFile(FA2, EAOutputFile, overwrite);
else
MatrixWriter.WriteMatrixToDyadicFile(FA2, EAOutputFile, overwrite);
//overwrite = false;
Matrix M2 = FA2 - FA1;
if (M2.IsAllZero)
{
// done?
EAOutput = FA2;
for (int i = 0; i < output.Rows; i++)
{
output.RowLabels[i] = (int.Parse(networkid + "0" + stage)).ToString();
}
if (!outputDyadic)
MatrixWriter.WriteMatrixToMatrixFile(output, outputfile, overwrite);
else
MatrixWriter.WriteMatrixToDyadicFile(output, outputfile, overwrite);
return output; // for now
}
else
{
// need to unbinarize FA2 first
Matrix Temp = new Matrix(FA2);
// argument needs to be UA11 and not UA12 (according to excel)
Matrix new_output = NAPTStageOneHelper2(CAP, SRG2, FA2, UA11, REL, AOC20, stage, networkid);
// write new_output to matrix file
if (!outputDyadic)
MatrixWriter.WriteMatrixToMatrixFile(new_output, outputfile, overwrite);
else
MatrixWriter.WriteMatrixToDyadicFile(new_output, outputfile, overwrite);
// Copy the data from SRG2 to SRGOutput
SRGOutput.Clear();
for (int i = 0; i < SRG2.Rows; i++)
for (int j = 0; j < SRG2.Cols; j++)
SRGOutput[i, j] = SRG2[i, j];
SRGOutput.NetworkId = new_output.NetworkId;
FA2.Clear();
Temp.CloneTo(FA2);
return SimulateNAPTStageTwo(FA2, SRG1, DP2, CAP, REL, UA11, rowColSize, new_output, ref SRGOutput, ref EAOutput, stage + 1, EAOutputFile, outputfile, overwrite, EADyadic, outputDyadic, networkid);
}
}
示例2: SimulateNAPTStageOne
//.........這裏部分代碼省略.........
// 4. Generate an Enemy of Enemy matrix (EE) and binarize it
Matrix EE = new Matrix(MID * MID);
// 5. Generate a potential alliance network matrix PAN
Matrix PAN = new Matrix(SRG.Rows, SRG.Cols);
for (int i = 0; i < SRG.Rows; i++)
for (int j = 0; j < SRG.Cols; j++)
PAN[i, j] = 1 - SRG[i, j];
// 6. Generate a joint democracy matrix (DD)
Matrix DD = new Matrix(DEMO.Rows, DEMO.Cols);
for (int i = 0; i < DEMO.Rows; i++)
for (int j = 0; j < DEMO.Cols; j++)
DD[i, j] = DEMO[i, i] * DEMO[j, j];
// 7. Generate a contiguity to SRG matrix (SRGCT)
Matrix SRGCT = SRG * CONT;
// 8. Binarize the EE matrix
// 9. Binarize the DD matrix
// 10. Binarize the SRGCT matrix
EE.Binarize();
DD.Binarize();
SRGCT.Binarize();
// 11. Generate a Utility for Potential Ally matrix UA11
Matrix UA11 = new Matrix(PAN.Rows, PAN.Cols);
double[] maxRowUA11 = new double[UA11.Rows];
for (int i = 0; i < PAN.Rows; i++)
{
double cur_max = double.MinValue; // find max value in row
for (int j = 0; j < PAN.Cols; j++)
{
if (i == j || PAN[i, j] == 0)
UA11[i, j] = 0;
else if (DEMO[i, i] == 1 && PAN[i, j] == 1)
UA11[i, j] = (0.2 * EE[i, j]) + (0.4 * DD[i, j]) + (0.1 * JC[i, j]) + (0.1 * CS[i, j]) + (0.2 * SRGCT[i, j]);
else if (DEMO[i, i] == 0 && PAN[i, j] == 1)
UA11[i, j] = (0.5 * EE[i, j]) + (0.1 * DD[i, j]) + (0.1 * JC[i, j]) + (0.1 * CS[i, j]) + (0.2 * SRGCT[i, j]);
if (UA11[i, j] > cur_max)
cur_max = UA11[i, j];
}
maxRowUA11[i] = cur_max;
}
// 12. Generate a matrix CUA11
Matrix CUA11 = new Matrix(UA11.Rows, UA11.Cols);
double[] maxRowCUA11 = new double[CUA11.Rows];
for (int i = 0; i < UA11.Rows; i++)
{
double cur_max = double.MinValue; // find max value in row
for (int j = 0; j < UA11.Cols; j++)
{
if (UA11[i, j] != maxRowUA11[i])
CUA11[i, j] = 0;
else if (UA11[i, j] == maxRowUA11[i] && PAN[i, j] > 0 && i != j) // needs PAN and i!=j conditions
CUA11[i, j] = CAP[j, j];
if (CUA11[i, j] > cur_max)
cur_max = CUA11[i, j];
}
maxRowCUA11[i] = cur_max;
}
Matrix DP1 = new Matrix(UA11.Rows, UA11.Cols);
Matrix FA1 = new Matrix(UA11.Rows, UA11.Cols);
NAPTStageOneHelper1(CAP, SRG, SRGC, PAN, UA11, CUA11, AOC, ref DP1, ref FA1, stage, null);
// write FA1 to matrix file
FA1.NetworkId = int.Parse(networkid + "0" + stage);
//FA1.NetworkId = SRG.NetworkId + 1;
//int.Parse(editedNetworkId + "01");
for (int i = 0; i < SRG.Rows; i++)
{
FA1.RowLabels[i] = SRG.RowLabels[i];
FA1.ColLabels[i] = SRG.ColLabels[i];
}
if (!EADyadic)
MatrixWriter.WriteMatrixToMatrixFile(FA1, EAOutputFile, overwrite);
else
MatrixWriter.WriteMatrixToDyadicFile(FA1, EAOutputFile, overwrite);
//overwrite = false;
Matrix Temp = new Matrix(FA1);
Matrix Output = NAPTStageOneHelper2(CAP, SRG, FA1, UA11, REL, AOC, stage, networkid);
// write Output to matrix file
if (!outputDyadic)
MatrixWriter.WriteMatrixToMatrixFile(Output, outputfile, overwrite);
else
MatrixWriter.WriteMatrixToDyadicFile(Output, outputfile, overwrite);
overwrite = false;
FA1.Clear();
Temp.CloneTo(FA1);
return SimulateNAPTStageTwo(FA1, SRG, DP1, CAP, REL, UA11, SRG.Rows, Output, ref SRGOutput, ref EAOutput, stage + 1, EAOutputFile, outputfile, overwrite, EADyadic, outputDyadic, networkid);
}
示例3: SimulateSimplifiedRealistStageTwo
private static Matrix SimulateSimplifiedRealistStageTwo(Matrix C, Matrix R, Matrix M, Matrix BEA, string outputFile, string srgOutputFile, int networkID, bool outputDyadic, bool srgDyadic, int maxIter, double br)
{
int stage = 2;
Matrix Temp = new Matrix(C.Rows);
BEA.CloneTo(Temp);
//Matrix OriginalR = new Matrix(C.Rows);
//R.CloneTo(OriginalR);
Matrix BEA2 = UpdateSimplifiedRealistStageTwo(C, R, M, BEA, outputFile, br);
BEA2.CopyLabelsFrom(C);
BEA2.NetworkId = int.Parse(networkID + "02");
R.NetworkId = BEA2.NetworkId;
while (!BEA2.IsSameAs(Temp) && (stage <= maxIter))
{
if (!outputDyadic)
MatrixWriter.WriteMatrixToMatrixFile(BEA2, outputFile, false);
else
MatrixWriter.WriteMatrixToDyadicFile(BEA2, outputFile, false);
if (!srgDyadic)
MatrixWriter.WriteMatrixToMatrixFile(R, srgOutputFile, false);
else
MatrixWriter.WriteMatrixToDyadicFile(R, srgOutputFile, false);
//Matrix OriginR = new Matrix(C.Rows);
//R.CloneTo(OriginR);
BEA.CloneTo(Temp);
BEA2.CloneTo(BEA);
BEA2 = UpdateSimplifiedRealistStageTwo(C, R, M, BEA, outputFile, br);
stage++;
BEA2.NetworkId = int.Parse(networkID + "" + (stage >= 10 ? stage + "" : "0" + stage + ""));
R.NetworkId = BEA2.NetworkId;
BEA2.CopyLabelsFrom(C);
}
return BEA2;
}
示例4: UpdateSimplifiedRealistStageTwo
/// <summary>
/// Simulates stage two of the realist network formation simulation.
/// </summary>
/// <param name="C">Capability matrix for stage two</param>
/// <param name="R">Policy relevance matrix (SRG)</param>
/// <param name="EAF">EAF matrix from stage one</param>
/// <param name="M">MID matrix</param>
/// <returns>Expected alliance matrix</returns>
/// <returns>EA matrix for stage two</returns>
private static Matrix UpdateSimplifiedRealistStageTwo(Matrix C, Matrix R, Matrix M, Matrix BEA, string outputFile, double br)
{
int n = C.Rows;
Matrix AE = M * BEA;
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
{
if (R[i, j] == 1 || AE[i, j] > 0 ) R[i, j] = 1;
else R[i, j] = 0;
}
R.ZeroDiagonal();
Matrix SRC = R * C;
Vector SRGC = new Vector(n);
for (int i = 0; i < n; ++i)
SRGC[i] = SRC.GetRowSum(i) * br;
Matrix EAC = BEA * C;
Vector AOC = new Vector(n);
for (int i = 0; i < n; ++i)
{
if (EAC.GetRowSum(i) + C[i, i] >= SRGC[i]) AOC[i] = 0;
else AOC[i] = 1 - ((EAC.GetRowSum(i) + C[i, i]) / SRGC[i]);
}
Matrix F = Matrix.Ones(n, n);
F.ZeroDiagonal();
Matrix PAN = F - R;
Matrix PAC = PAN * C;
Matrix EE = M * M;
EE.ZeroDiagonal();
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
if (EE[i, j] != 0) EE[i, j] = 1;
Matrix EEC = EE * C;
Vector EEM = new Vector(n);
for (int i = 0; i < n; ++i)
EEM[i] = Algorithms.MaxValue<double>(EEC.GetRowEnumerator(i));
Matrix EA = new Matrix(n, n);
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
if (EAC[i, j] > 0 || AOC[i] <= 0)
EA[i, j] = EAC[i, j];
else if (PAN[i, j] > 0 && EEC[i, j] == EEM[i])
EA[i, j] = EEC[i, j];
else
EA[i, j] = 0;
//Copied from Stage 1
Vector SEA = new Vector(n);
Matrix previousEA = new Matrix(n);
Matrix TempEEC = new Matrix(n);
EEC.CloneTo(TempEEC);
do
{
EA.CloneTo(previousEA);
for (int i = 0; i < n; ++i)
SEA[i] = EA.GetRowSum(i) + C[i, i];
for (int i = 0; i < n; ++i)
{
if (SRGC[i] <= SEA[i]) AOC[i] = 0;
else AOC[i] = 1 - SEA[i] / SRGC[i];
}
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
if (EEC[i, j] == EEM[i]) EEC[i, j] = 0;
for (int i = 0; i < n; ++i)
EEM[i] = Algorithms.MaxValue<double>(EEC.GetRowEnumerator(i));
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
//.........這裏部分代碼省略.........
示例5: SimulateSimplifiedRealistStageOne
/// <summary>
/// Simulates stage one of the SIMPLIFIED realist network formation simulation.
/// </summary>
/// <param name="C">Capability matrix</param>
/// <param name="R">Policy relevance matrix (SRG)</param>
/// <param name="M">MID matrix</param>
/// <returns>Expected alliance matrix</returns>
private static Matrix SimulateSimplifiedRealistStageOne(Matrix C, Matrix R, Matrix M, string outputFile, double br)
{
int n = C.Rows;
Matrix SRC = R * C;
Vector SRGC = new Vector(n);
for (int i = 0; i < n; ++i)
SRGC[i] = SRC.GetRowSum(i) * br;
Vector AOC = new Vector(n);
for (int i = 0; i < n; ++i)
{
if (SRGC[i] <= C[i, i]) AOC[i] = 0;
else AOC[i] = 1 - C[i, i] / SRGC[i];
}
Matrix F = Matrix.Ones(n, n);
F.ZeroDiagonal();
Matrix PAN = F - R;
Matrix PAC = PAN * C;
Matrix EE = M * M;
EE.ZeroDiagonal();
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
if (EE[i, j] != 0) EE[i, j] = 1;
Matrix EEC = EE * C;
Vector EEM = new Vector(n);
for (int i = 0; i < n; ++i)
EEM[i] = Algorithms.MaxValue<double>(EEC.GetRowEnumerator(i));
Matrix EA = new Matrix(n, n);
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
if (EEC[i, j] == EEM[i] && PAN[i, j] == 1 && AOC[i] != 0)
EA[i, j] = EEC[i, j];
else
EA[i, j] = 0;
Vector SEA = new Vector(n);
Matrix previousEA = new Matrix(n);
do
{
EA.CloneTo(previousEA);
for (int i = 0; i < n; ++i)
SEA[i] = EA.GetRowSum(i) + C[i, i];
for (int i = 0; i < n; ++i)
{
if (SRGC[i] <= SEA[i]) AOC[i] = 0;
else AOC[i] = 1 - SEA[i] / SRGC[i];
}
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
if (EEC[i, j] == EEM[i]) EEC[i, j] = 0;
for (int i = 0; i < n; ++i)
EEM[i] = Algorithms.MaxValue<double>(EEC.GetRowEnumerator(i));
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
{
//if (AOC[i] != 0 && EEC[i, j] == EEM[i] && EA[i, j] == 0)
// EA[i, j] = EEC[i, j];
if (AOC[i] == 0 || EA[i, j] != 0);
else if (PAN[i, j] > 0 && EEC[i, j] == EEM[i])
EA[i, j] = EEC[i, j];
else EA[i, j] = 0;
}
} while ((!previousEA.IsSameAs(EA)) && !EEC.IsAllZero && !AOC.IsZeroVector);
if (!AOC.IsZeroVector)
{
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
if (PAC[i, j] > 0 && EEC[i, j] != 0) PAC[i, j] = 0;
Vector PAM = new Vector(n);
for (int i = 0; i < n; ++i)
PAM[i] = Algorithms.MaxValue<double>(PAC.GetRowEnumerator(i));
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
//.........這裏部分代碼省略.........