當前位置: 首頁>>代碼示例>>C#>>正文


C# Matrix.GetType方法代碼示例

本文整理匯總了C#中System.Matrix.GetType方法的典型用法代碼示例。如果您正苦於以下問題:C# Matrix.GetType方法的具體用法?C# Matrix.GetType怎麽用?C# Matrix.GetType使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在System.Matrix的用法示例。


在下文中一共展示了Matrix.GetType方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: TestCreateMatrix

        public void TestCreateMatrix()
        {
            var matrix = new Matrix<int>(2, 2);

            var other_matrix = matrix.CreateMatrix(3, 3);
            Assert.IsInstanceOfType(matrix.GetType(), other_matrix);
        }
開發者ID:pipifuyj,項目名稱:MyMediaLite,代碼行數:7,代碼來源:MatrixTest.cs

示例2: Main

        public static void Main()
        {
            System.Threading.Thread.CurrentThread.CurrentCulture = 
                System.Globalization.CultureInfo.InvariantCulture; 
            try
            {
                int[,] mat1 = new int[,] 
                { 
                    { 1, -2, -3 }, 
                    { 2, 0, 1 }, 
                    { 1, 1, 1 } 
                };

                Matrix<int> matrix1 = new Matrix<int>(mat1);

                int[,] mat2 = new int[3, 3];
                
                Matrix<int> matrix2 = new Matrix<int>(mat2);

                Console.WriteLine(matrix1 ? "True" : "False");
                Console.WriteLine();
                Console.WriteLine(matrix2 ? "True" : "False");
                Type type = matrix1.GetType();

                foreach (var attr in type.GetCustomAttributes(false))
                {
                    if (attr is VersionAttribute)
                    {
                        Console.WriteLine("This is version {0} of the {1} class.",
                            (attr as VersionAttribute).Version, type.FullName);
                    }
                }

                Console.WriteLine();
                
                foreach (var attr in type.GetMethod("ToString").GetCustomAttributes(false)) 
                {
                    if (attr is VersionAttribute)
                    {
                        Console.WriteLine("This is version {0} of the {1} method.",
                            (attr as VersionAttribute).Version, type.GetMethod("ToString").Name);
                    }
                }
            }
            catch (ArgumentException ex)
            {
                Console.WriteLine(ex.Message);
            }           
        }
開發者ID:NikolayKostadinov,項目名稱:Homeworks,代碼行數:49,代碼來源:Program.cs

示例3: btnOpenTestImage_Click

        ///////////////////////////////////////////////////////////////////////////////////////////
        private void btnOpenTestImage_Click(object sender, EventArgs e)
        {
            // note: we effectively have to read the first XML file twice
                    // first, we read the file to get the number of rows (which is the same as the number of samples).
                    // the first time reading the file we can't get the data yet, since we don't know how many rows of data there are
                    // next, reinstantiate our classifications Matrix and training images Matrix with the correct number of rows
                    // then, read the file again and this time read the data into our resized classifications Matrix and training images Matrix

            Matrix<Single> mtxClassifications = new Matrix<Single>(1, 1);       // for the first time through, declare these to be 1 row by 1 column
            Matrix<Single> mtxTrainingImages = new Matrix<Single>(1, 1);        // we will resize these when we know the number of rows (i.e. number of training samples)

                    // possible chars we are interested in are digits 0 through 9
            List<int> intValidChars = new List<int> { (int)'0', (int)'1', (int)'2', (int)'3', (int)'4', (int)'5', (int)'6', (int)'7', (int)'8', (int)'9' };

            XmlSerializer xmlSerializer = new XmlSerializer(mtxClassifications.GetType());      // these variables are for
            StreamReader streamReader;                                                          // reading from the XML files

            try {
                streamReader = new StreamReader("classifications.xml");                     // attempt to open classifications file
            } catch(Exception ex) {                                                         // if error is encountered, show error and return
                txtInfo.Text = Environment.NewLine + txtInfo.Text + "unable to open 'classifications.xml', error:" + Environment.NewLine;
                txtInfo.Text = txtInfo.Text + ex.Message + Environment.NewLine + Environment.NewLine;
                return;
            }

                    // read from the classifications file the 1st time, this is only to get the number of rows, not the actual data
            mtxClassifications = (Matrix<Single>)xmlSerializer.Deserialize(streamReader);

            streamReader.Close();               // close the classifications XML file

            intNumberOfTrainingSamples = mtxClassifications.Rows;       // get the number of rows, i.e. the number of training samples

                    // now that we know the number of rows, reinstantiate classifications Matrix and training images Matrix with the actual number of rows
            mtxClassifications = new Matrix<Single>(intNumberOfTrainingSamples, 1);
            mtxTrainingImages = new Matrix<Single>(intNumberOfTrainingSamples, RESIZED_IMAGE_WIDTH * RESIZED_IMAGE_HEIGHT);

            try {
                streamReader = new StreamReader("classifications.xml");                 // attempt to reinitialize the stream reader
            } catch (Exception ex) {                                                    // if error is encountered, show error and return
                txtInfo.Text = Environment.NewLine + txtInfo.Text + "unable to open 'classifications.xml', error:" + Environment.NewLine;
                txtInfo.Text = txtInfo.Text + ex.Message + Environment.NewLine + Environment.NewLine;
                return;
            }

                    // read from the classifications file again, this time we can get the actual data
            mtxClassifications = (Matrix<Single>)xmlSerializer.Deserialize(streamReader);

            streamReader.Close();           // close the classifications XML file

            xmlSerializer = new XmlSerializer(mtxTrainingImages.GetType());     // reinstantiate file reading variables

            try {
                streamReader = new StreamReader("images.xml");
            } catch (Exception ex) {                                            // if error is encountered, show error and return
                txtInfo.Text = Environment.NewLine + txtInfo.Text + "unable to open 'images.xml', error:" + Environment.NewLine;
                txtInfo.Text = txtInfo.Text + ex.Message + Environment.NewLine + Environment.NewLine;
                return;
            }

            mtxTrainingImages = (Matrix<Single>)xmlSerializer.Deserialize(streamReader);        // read from training images file
            streamReader.Close();           // close the training images XML file

                    // train //////////////////////////////////////////////////////////

            KNearest kNearest = new KNearest();                                                 // instantiate KNN object
            kNearest.Train(mtxTrainingImages, mtxClassifications, null, false, 1,false);        // call to train

                    // test ///////////////////////////////////////////////////////////////////////

            DialogResult drChosenFile;

            drChosenFile = ofdOpenFile.ShowDialog();            // open file dialog

            if (drChosenFile != DialogResult.OK || ofdOpenFile.FileName == "") {            // if user chose Cancel or filename is blank . . .
                lblChosenFile.Text = "file not chosen";         // show error message on label
                return;                                         // and exit function
            }

            Image<Bgr, Byte> imgTestingNumbers;                 // this is the main input image

            try {
                imgTestingNumbers = new Image<Bgr, Byte>(ofdOpenFile.FileName);         // open image
            } catch(Exception ex) {                                                     // if error occurred
                lblChosenFile.Text = "unable to open image, error: " + ex.Message;      // show error message on label
                return;                                                                 // and exit function
            }

            if(imgTestingNumbers == null) {                         //if image could not be opened
                lblChosenFile.Text = "unable to open image";        // show error message on label
                return;                                             // and exit function
            }

            lblChosenFile.Text = ofdOpenFile.FileName;              // update label with file name

            Image<Gray, Byte> imgGrayscale;              //
            Image<Gray, Byte> imgBlurred;                // declare various images
            Image<Gray, Byte> imgThresh;                 //
            Image<Gray, Byte> imgThreshCopy;             //

//.........這裏部分代碼省略.........
開發者ID:MicrocontrollersAndMore,項目名稱:OpenCV_KNN_Character_Recognition_Machine_Learning_Visual_Basic_C_Sharp,代碼行數:101,代碼來源:TrainAndTest.cs

示例4: btnOpenTrainingImage_Click


//.........這裏部分代碼省略.........

            contours = imgThreshCopy.FindContours(CHAIN_APPROX_METHOD.CV_CHAIN_APPROX_SIMPLE, RETR_TYPE.CV_RETR_EXTERNAL);      // get contours again to go back to beginning

            imgContours = new Image<Gray, Byte>(imgThresh.Size);        // instantiate contours image

                                                                        // draw contours onto contours image
            CvInvoke.cvDrawContours(imgContours, contours, new MCvScalar(255), new MCvScalar(255), 100, 1, LINE_TYPE.CV_AA, new Point(0, 0));

            CvInvoke.cvShowImage("imgContours", imgContours);           // show contours image for reference

                                            // this is our classifications data structure
            Matrix<Single> mtxClassifications = new Matrix<Single>(intNumberOfTrainingSamples, 1);

                                            // this is our training images data structure, note we will have to perform some conversions to write to this later
            Matrix<Single> mtxTrainingImages = new Matrix<Single>(intNumberOfTrainingSamples, RESIZED_IMAGE_WIDTH * RESIZED_IMAGE_HEIGHT);

                                                    // this keeps track of which row we are on in both classifications and training images,
            int intTrainingDataRowToAdd = 0;        // note that each sample will correspond to one row in
                                                    // both the classifications XML file and the training images XML file

            while (contours != null) {
                Contour<Point> contour = contours.ApproxPoly(contours.Perimeter * 0.0001);          //get the current contour, note that the lower the multiplier, the higher the precision
                if (ContourIsValid(contour)) {                                  // if contour is big enough to consider
                    Rectangle rect = contour.BoundingRectangle;                 // get the bounding rect
                    imgTrainingNumbers.Draw(rect, new Bgr(Color.Red), 2);       // draw red rectangle around each contour as we ask user for input
                    Image<Gray, Byte> imgROI = imgThresh.Copy(rect);            // get ROI image of current char

                                        // resize image, this is necessary for recognition and storage
                    Image<Gray, Byte> imgROIResized = imgROI.Resize(RESIZED_IMAGE_WIDTH, RESIZED_IMAGE_HEIGHT, INTER.CV_INTER_LINEAR);

                    CvInvoke.cvShowImage("imgROI", imgROI);                                 // show ROI image for reference
                    CvInvoke.cvShowImage("imgROIResized", imgROIResized);                   // show resized ROI image for reference
                    CvInvoke.cvShowImage("imgTrainingNumbers", imgTrainingNumbers);         // show training numbers image, this will now have red rectangles drawn on it

                    int intChar = CvInvoke.cvWaitKey(0);        // get key press

                    if (intChar == 27) {                // if esc key was pressed
                        return;                         // exit the function
                    } else if (intValidChars.Contains(intChar)) {           // else if the char is in the list of chars we are looking for . . .

                        mtxClassifications[intTrainingDataRowToAdd, 0] = Convert.ToSingle(intChar);         // write classification char to classifications Matrix

                        // now add the training image (some conversion is necessary first) . . .
                        // note that we have to covert the images to Matrix(Of Single) type, this is necessary to pass into the KNearest object call to train
                        Matrix<Single> mtxTemp = new Matrix<Single>(imgROIResized.Size);                    // declare a Matrix of the same dimensions as the Image we are adding to the data structure of training images
                        Matrix<Single> mtxTempReshaped = new Matrix<Single>(1, RESIZED_IMAGE_WIDTH * RESIZED_IMAGE_HEIGHT);         // declare a flattened (only 1 row) matrix of the same total size

                        CvInvoke.cvConvert(imgROIResized, mtxTemp);             // convert Image to a Matrix of Singles with the same dimensions

                        for (int intRow = 0; intRow < RESIZED_IMAGE_HEIGHT; intRow++) {         // flatten Matrix into one row by RESIZED_IMAGE_WIDTH * RESIZED_IMAGE_HEIGHT number of columns
                            for (int intCol = 0; intCol < RESIZED_IMAGE_WIDTH; intCol++) {
                                mtxTempReshaped[0, (intRow * RESIZED_IMAGE_WIDTH) + intCol] = mtxTemp[intRow, intCol];
                            }
                        }

                        for (int intCol = 0; intCol < RESIZED_IMAGE_WIDTH * RESIZED_IMAGE_HEIGHT; intCol++) {       // write flattened Matrix into one row of training images Matrix
                            mtxTrainingImages[intTrainingDataRowToAdd, intCol] = mtxTempReshaped[0, intCol];
                        }

                        intTrainingDataRowToAdd = intTrainingDataRowToAdd + 1;          // increment which row, i.e. sample we are on
                    }   // end else if
                }   // end if
                contours = contours.HNext;              // move on to next contour
            }   // end while

            txtInfo.Text = txtInfo.Text + "training complete !!" + Environment.NewLine + Environment.NewLine;

                    // save classifications to file /////////////////////////////////////

            XmlSerializer xmlSerializer = new XmlSerializer(mtxClassifications.GetType());
            StreamWriter streamWriter;

            try {
                streamWriter = new StreamWriter("classifications.xml");                     // attempt to open classifications file
            } catch (Exception ex) {                                                        // if error is encountered, show error and return
                txtInfo.Text = Environment.NewLine + txtInfo.Text + "unable to open 'classifications.xml', error:" + Environment.NewLine;
                txtInfo.Text = txtInfo.Text + ex.Message + Environment.NewLine + Environment.NewLine;
                return;
            }

            xmlSerializer.Serialize(streamWriter, mtxClassifications);
            streamWriter.Close();

                    // save training images to file /////////////////////////////////////

            xmlSerializer = new XmlSerializer(mtxTrainingImages.GetType());

            try {
                streamWriter = new StreamWriter("images.xml");                     // attempt to open classifications file
            } catch (Exception ex) {                                                        // if error is encountered, show error and return
                txtInfo.Text = Environment.NewLine + txtInfo.Text + "unable to open 'images.xml', error:" + Environment.NewLine;
                txtInfo.Text = txtInfo.Text + ex.Message + Environment.NewLine + Environment.NewLine;
                return;
            }

            xmlSerializer.Serialize(streamWriter, mtxTrainingImages);
            streamWriter.Close();

            txtInfo.Text = Environment.NewLine + txtInfo.Text + "file writing done" + Environment.NewLine;
        }
開發者ID:MicrocontrollersAndMore,項目名稱:OpenCV_KNN_Character_Recognition_Machine_Learning_Visual_Basic_C_Sharp,代碼行數:101,代碼來源:GenerateData.cs


注:本文中的System.Matrix.GetType方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。