本文整理匯總了C#中System.Matrix.At方法的典型用法代碼示例。如果您正苦於以下問題:C# Matrix.At方法的具體用法?C# Matrix.At怎麽用?C# Matrix.At使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Matrix
的用法示例。
在下文中一共展示了Matrix.At方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Create
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public static UserEvd Create(Matrix<Complex32> matrix)
{
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
var eigenVectors = DenseMatrix.CreateIdentity(order);
var blockDiagonal = matrix.CreateMatrix(order, order);
var eigenValues = new LinearAlgebra.Complex.DenseVector(order);
var isSymmetric = true;
for (var i = 0; isSymmetric && i < order; i++)
{
for (var j = 0; isSymmetric && j < order; j++)
{
isSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
}
}
if (isSymmetric)
{
var matrixCopy = matrix.ToArray();
var tau = new Complex32[order];
var d = new float[order];
var e = new float[order];
SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
SymmetricDiagonalize(eigenVectors, d, e, order);
SymmetricUntridiagonalize(eigenVectors, matrixCopy, tau, order);
for (var i = 0; i < order; i++)
{
eigenValues[i] = new Complex(d[i], e[i]);
}
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order);
NonsymmetricReduceHessenberToRealSchur(eigenVectors, eigenValues, matrixH, order);
}
for (var i = 0; i < eigenValues.Count; i++)
{
blockDiagonal.At(i, i, (Complex32) eigenValues[i]);
}
return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
}
示例2: UserEvd
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public UserEvd(Matrix<Complex> matrix)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
MatrixEv = DenseMatrix.Identity(order);
MatrixD = matrix.CreateMatrix(order, order);
VectorEv = new DenseVector(order);
IsSymmetric = true;
for (var i = 0; IsSymmetric && i < order; i++)
{
for (var j = 0; IsSymmetric && j < order; j++)
{
IsSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
}
}
if (IsSymmetric)
{
var matrixCopy = matrix.ToArray();
var tau = new Complex[order];
var d = new double[order];
var e = new double[order];
SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
SymmetricDiagonalize(d, e, order);
SymmetricUntridiagonalize(matrixCopy, tau, order);
for (var i = 0; i < order; i++)
{
VectorEv[i] = new Complex(d[i], e[i]);
}
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(matrixH, order);
NonsymmetricReduceHessenberToRealSchur(matrixH, order);
}
MatrixD.SetDiagonal(VectorEv);
}
示例3: UserCholesky
/// <summary>
/// Initializes a new instance of the <see cref="UserCholesky"/> class. This object will compute the
/// Cholesky factorization when the constructor is called and cache it's factorization.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is not a square matrix.</exception>
/// <exception cref="ArgumentException">If <paramref name="matrix"/> is not positive definite.</exception>
public UserCholesky(Matrix matrix)
{
if (matrix == null)
{
throw new ArgumentNullException("matrix");
}
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
// Create a new matrix for the Cholesky factor, then perform factorization (while overwriting).
CholeskyFactor = matrix.Clone();
for (var j = 0; j < CholeskyFactor.RowCount; j++)
{
var d = 0.0;
for (var k = 0; k < j; k++)
{
var s = 0.0;
for (var i = 0; i < k; i++)
{
s += CholeskyFactor.At(k, i) * CholeskyFactor.At(j, i);
}
s = (matrix.At(j, k) - s) / CholeskyFactor.At(k, k);
CholeskyFactor.At(j, k, s);
d += s * s;
}
d = matrix.At(j, j) - d;
if (d <= 0.0)
{
throw new ArgumentException(Resources.ArgumentMatrixPositiveDefinite);
}
CholeskyFactor.At(j, j, Math.Sqrt(d));
for (var k = j + 1; k < CholeskyFactor.RowCount; k++)
{
CholeskyFactor.At(j, k, 0.0);
}
}
}
示例4: Create
/// <summary>
/// Initializes a new instance of the <see cref="UserEvd"/> class. This object will compute the
/// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
/// </summary>
/// <param name="matrix">The matrix to factor.</param>
/// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
/// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
public static UserEvd Create(Matrix<float> matrix)
{
if (matrix.RowCount != matrix.ColumnCount)
{
throw new ArgumentException(Resources.ArgumentMatrixSquare);
}
var order = matrix.RowCount;
// Initialize matricies for eigenvalues and eigenvectors
var eigenVectors = Matrix<float>.Build.SameAs(matrix, order, order);
var blockDiagonal = Matrix<float>.Build.SameAs(matrix, order, order);
var eigenValues = new LinearAlgebra.Complex.DenseVector(order);
var isSymmetric = true;
for (var i = 0; isSymmetric && i < order; i++)
{
for (var j = 0; isSymmetric && j < order; j++)
{
isSymmetric &= matrix.At(i, j) == matrix.At(j, i);
}
}
var d = new float[order];
var e = new float[order];
if (isSymmetric)
{
matrix.CopyTo(eigenVectors);
d = eigenVectors.Row(order - 1).ToArray();
SymmetricTridiagonalize(eigenVectors, d, e, order);
SymmetricDiagonalize(eigenVectors, d, e, order);
}
else
{
var matrixH = matrix.ToArray();
NonsymmetricReduceToHessenberg(eigenVectors, matrixH, order);
NonsymmetricReduceHessenberToRealSchur(eigenVectors, matrixH, d, e, order);
}
for (var i = 0; i < order; i++)
{
blockDiagonal.At(i, i, d[i]);
if (e[i] > 0)
{
blockDiagonal.At(i, i + 1, e[i]);
}
else if (e[i] < 0)
{
blockDiagonal.At(i, i - 1, e[i]);
}
}
for (var i = 0; i < order; i++)
{
eigenValues[i] = new Complex(d[i], e[i]);
}
return new UserEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
}
示例5: NonsymmetricReduceHessenberToRealSchur
//.........這裏部分代碼省略.........
{
d[n] = x - (w/z);
}
e[n - 1] = 0.0f;
e[n] = 0.0f;
x = matrixH[n, n - 1];
s = Math.Abs(x) + Math.Abs(z);
p = x/s;
q = z/s;
r = (float) Math.Sqrt((p*p) + (q*q));
p = p/r;
q = q/r;
// Row modification
for (var j = n - 1; j < order; j++)
{
z = matrixH[n - 1, j];
matrixH[n - 1, j] = (q*z) + (p*matrixH[n, j]);
matrixH[n, j] = (q*matrixH[n, j]) - (p*z);
}
// Column modification
for (var i = 0; i <= n; i++)
{
z = matrixH[i, n - 1];
matrixH[i, n - 1] = (q*z) + (p*matrixH[i, n]);
matrixH[i, n] = (q*matrixH[i, n]) - (p*z);
}
// Accumulate transformations
for (var i = 0; i < order; i++)
{
z = eigenVectors.At(i, n - 1);
eigenVectors.At(i, n - 1, (q*z) + (p*eigenVectors.At(i, n)));
eigenVectors.At(i, n, (q*eigenVectors.At(i, n)) - (p*z));
}
// Complex pair
}
else
{
d[n - 1] = x + p;
d[n] = x + p;
e[n - 1] = z;
e[n] = -z;
}
n = n - 2;
iter = 0;
// No convergence yet
}
else
{
// Form shift
x = matrixH[n, n];
y = 0.0f;
w = 0.0f;
if (l < n)
{
y = matrixH[n - 1, n - 1];
w = matrixH[n, n - 1]*matrixH[n - 1, n];
}
// Wilkinson's original ad hoc shift
示例6: SymmetricTridiagonalize
/// <summary>
/// Symmetric Householder reduction to tridiagonal form.
/// </summary>
/// <param name="eigenVectors">The eigen vectors to work on.</param>
/// <param name="d">Arrays for internal storage of real parts of eigenvalues</param>
/// <param name="e">Arrays for internal storage of imaginary parts of eigenvalues</param>
/// <param name="order">Order of initial matrix</param>
/// <remarks>This is derived from the Algol procedures tred2 by
/// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
/// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
/// Fortran subroutine in EISPACK.</remarks>
static void SymmetricTridiagonalize(Matrix<float> eigenVectors, float[] d, float[] e, int order)
{
// Householder reduction to tridiagonal form.
for (var i = order - 1; i > 0; i--)
{
// Scale to avoid under/overflow.
var scale = 0.0f;
var h = 0.0f;
for (var k = 0; k < i; k++)
{
scale = scale + Math.Abs(d[k]);
}
if (scale == 0.0f)
{
e[i] = d[i - 1];
for (var j = 0; j < i; j++)
{
d[j] = eigenVectors.At(i - 1, j);
eigenVectors.At(i, j, 0.0f);
eigenVectors.At(j, i, 0.0f);
}
}
else
{
// Generate Householder vector.
for (var k = 0; k < i; k++)
{
d[k] /= scale;
h += d[k]*d[k];
}
var f = d[i - 1];
var g = (float) Math.Sqrt(h);
if (f > 0)
{
g = -g;
}
e[i] = scale*g;
h = h - (f*g);
d[i - 1] = f - g;
for (var j = 0; j < i; j++)
{
e[j] = 0.0f;
}
// Apply similarity transformation to remaining columns.
for (var j = 0; j < i; j++)
{
f = d[j];
eigenVectors.At(j, i, f);
g = e[j] + (eigenVectors.At(j, j)*f);
for (var k = j + 1; k <= i - 1; k++)
{
g += eigenVectors.At(k, j)*d[k];
e[k] += eigenVectors.At(k, j)*f;
}
e[j] = g;
}
f = 0.0f;
for (var j = 0; j < i; j++)
{
e[j] /= h;
f += e[j]*d[j];
}
var hh = f/(h + h);
for (var j = 0; j < i; j++)
{
e[j] -= hh*d[j];
}
for (var j = 0; j < i; j++)
{
f = d[j];
g = e[j];
for (var k = j; k <= i - 1; k++)
{
eigenVectors.At(k, j, eigenVectors.At(k, j) - (f*e[k]) - (g*d[k]));
}
//.........這裏部分代碼省略.........
示例7: DoCholeskyStep
/// <summary>
/// Calculate Cholesky step
/// </summary>
/// <param name="data">Factor matrix</param>
/// <param name="rowDim">Number of rows</param>
/// <param name="firstCol">Column start</param>
/// <param name="colLimit">Total columns</param>
/// <param name="multipliers">Multipliers calculated previously</param>
/// <param name="availableCores">Number of available processors</param>
private static void DoCholeskyStep(Matrix<Complex32> data, int rowDim, int firstCol, int colLimit, Complex32[] multipliers, int availableCores)
{
var tmpColCount = colLimit - firstCol;
if ((availableCores > 1) && (tmpColCount > 200))
{
var tmpSplit = firstCol + (tmpColCount / 3);
var tmpCores = availableCores / 2;
CommonParallel.Invoke(
() => DoCholeskyStep(data, rowDim, firstCol, tmpSplit, multipliers, tmpCores),
() => DoCholeskyStep(data, rowDim, tmpSplit, colLimit, multipliers, tmpCores));
}
else
{
for (var j = firstCol; j < colLimit; j++)
{
var tmpVal = multipliers[j];
for (var i = j; i < rowDim; i++)
{
data.At(i, j, data.At(i, j) - (multipliers[i] * tmpVal.Conjugate()));
}
}
}
}
示例8: DoTransposeThisAndMultiply
/// <summary>
/// Multiplies the transpose of this matrix with another matrix and places the results into the result matrix.
/// </summary>
/// <param name="other">The matrix to multiply with.</param>
/// <param name="result">The result of the multiplication.</param>
protected override void DoTransposeThisAndMultiply(Matrix<Complex> other, Matrix<Complex> result)
{
var diagonalOther = other as DiagonalMatrix;
var diagonalResult = result as DiagonalMatrix;
if (diagonalOther != null && diagonalResult != null)
{
var thisDataCopy = new Complex[diagonalResult._data.Length];
var otherDataCopy = new Complex[diagonalResult._data.Length];
Array.Copy(_data, thisDataCopy, (diagonalResult._data.Length > _data.Length) ? _data.Length : diagonalResult._data.Length);
Array.Copy(diagonalOther._data, otherDataCopy, (diagonalResult._data.Length > diagonalOther._data.Length) ? diagonalOther._data.Length : diagonalResult._data.Length);
Control.LinearAlgebraProvider.PointWiseMultiplyArrays(thisDataCopy, otherDataCopy, diagonalResult._data);
return;
}
var denseOther = other.Storage as DenseColumnMajorMatrixStorage<Complex>;
if (denseOther != null)
{
var dense = denseOther.Data;
var diagonal = _data;
var d = Math.Min(denseOther.RowCount, ColumnCount);
if (d < ColumnCount)
{
result.ClearSubMatrix(denseOther.RowCount, ColumnCount - denseOther.RowCount, 0, denseOther.ColumnCount);
}
int index = 0;
for (int i = 0; i < denseOther.ColumnCount; i++)
{
for (int j = 0; j < d; j++)
{
result.At(j, i, dense[index]*diagonal[j]);
index++;
}
index += (denseOther.RowCount - d);
}
return;
}
base.DoTransposeThisAndMultiply(other, result);
}
示例9: DoNegate
/// <summary>
/// Negate each element of this matrix and place the results into the result matrix.
/// </summary>
/// <param name="result">The result of the negation.</param>
protected override void DoNegate(Matrix<Complex> result)
{
var diagResult = result as DiagonalMatrix;
if (diagResult != null)
{
Control.LinearAlgebraProvider.ScaleArray(-1, _data, diagResult._data);
return;
}
result.Clear();
for (var i = 0; i < _data.Length; i++)
{
result.At(i, i, -_data[i]);
}
}
示例10: DoAdd
/// <summary>
/// Adds another matrix to this matrix.
/// </summary>
/// <param name="other">The matrix to add to this matrix.</param>
/// <param name="result">The matrix to store the result of the addition.</param>
/// <exception cref="ArgumentNullException">If the other matrix is <see langword="null"/>.</exception>
/// <exception cref="ArgumentOutOfRangeException">If the two matrices don't have the same dimensions.</exception>
protected override void DoAdd(Matrix<float> other, Matrix<float> result)
{
var sparseOther = other as SparseMatrix;
var sparseResult = result as SparseMatrix;
if (sparseOther == null || sparseResult == null)
{
base.DoAdd(other, result);
return;
}
if (ReferenceEquals(this, other))
{
if (!ReferenceEquals(this, result))
{
CopyTo(result);
}
Control.LinearAlgebraProvider.ScaleArray(2.0f, _storage.Values, _storage.Values);
return;
}
SparseMatrix left;
if (ReferenceEquals(sparseOther, sparseResult))
{
left = this;
}
else if (ReferenceEquals(this, sparseResult))
{
left = sparseOther;
}
else
{
CopyTo(sparseResult);
left = sparseOther;
}
var leftStorage = left._storage;
for (var i = 0; i < leftStorage.RowCount; i++)
{
var endIndex = leftStorage.RowPointers[i + 1];
for (var j = leftStorage.RowPointers[i]; j < endIndex; j++)
{
var columnIndex = leftStorage.ColumnIndices[j];
var resVal = leftStorage.Values[j] + result.At(i, columnIndex);
result.At(i, columnIndex, resVal);
}
}
}
示例11: UpperTriangleImpl
/// <summary>
/// Puts the upper triangle of this matrix into the result matrix.
/// </summary>
/// <param name="result">Where to store the lower triangle.</param>
private void UpperTriangleImpl(Matrix<float> result)
{
var rowPointers = _storage.RowPointers;
var columnIndices = _storage.ColumnIndices;
var values = _storage.Values;
for (var row = 0; row < result.RowCount; row++)
{
var endIndex = rowPointers[row + 1];
for (var j = rowPointers[row]; j < endIndex; j++)
{
if (row <= columnIndices[j])
{
result.At(row, columnIndices[j], values[j]);
}
}
}
}
示例12: DoTransposeAndMultiply
/// <summary>
/// Multiplies this matrix with transpose of another matrix and places the results into the result matrix.
/// </summary>
/// <param name="other">The matrix to multiply with.</param>
/// <param name="result">The result of the multiplication.</param>
protected override void DoTransposeAndMultiply(Matrix<float> other, Matrix<float> result)
{
var otherSparse = other as SparseMatrix;
var resultSparse = result as SparseMatrix;
if (otherSparse == null || resultSparse == null)
{
base.DoTransposeAndMultiply(other, result);
return;
}
resultSparse.Clear();
var rowPointers = _storage.RowPointers;
var values = _storage.Values;
var otherStorage = otherSparse._storage;
for (var j = 0; j < RowCount; j++)
{
var startIndexOther = otherStorage.RowPointers[j];
var endIndexOther = otherStorage.RowPointers[j + 1];
if (startIndexOther == endIndexOther)
{
continue;
}
for (var i = 0; i < RowCount; i++)
{
// Multiply row of matrix A on row of matrix B
var startIndexThis = rowPointers[i];
var endIndexThis = rowPointers[i + 1];
if (startIndexThis == endIndexThis)
{
continue;
}
var sum = 0f;
for (var index = startIndexOther; index < endIndexOther; index++)
{
var ind = _storage.FindItem(i, otherStorage.ColumnIndices[index]);
if (ind >= 0)
{
sum += otherStorage.Values[index]*values[ind];
}
}
resultSparse._storage.At(i, j, sum + result.At(i, j));
}
}
}
示例13: DoSubtract
/// <summary>
/// Subtracts another matrix from this matrix.
/// </summary>
/// <param name="other">The matrix to subtract to this matrix.</param>
/// <param name="result">The matrix to store the result of subtraction.</param>
/// <exception cref="ArgumentNullException">If the other matrix is <see langword="null"/>.</exception>
/// <exception cref="ArgumentOutOfRangeException">If the two matrices don't have the same dimensions.</exception>
protected override void DoSubtract(Matrix<float> other, Matrix<float> result)
{
var sparseOther = other as SparseMatrix;
var sparseResult = result as SparseMatrix;
if (sparseOther == null || sparseResult == null)
{
base.DoSubtract(other, result);
return;
}
if (ReferenceEquals(this, other))
{
result.Clear();
return;
}
var otherStorage = sparseOther._storage;
if (ReferenceEquals(this, sparseResult))
{
for (var i = 0; i < otherStorage.RowCount; i++)
{
var endIndex = otherStorage.RowPointers[i + 1];
for (var j = otherStorage.RowPointers[i]; j < endIndex; j++)
{
var columnIndex = otherStorage.ColumnIndices[j];
var resVal = sparseResult.At(i, columnIndex) - otherStorage.Values[j];
result.At(i, columnIndex, resVal);
}
}
}
else
{
if (!ReferenceEquals(sparseOther, sparseResult))
{
sparseOther.CopyTo(sparseResult);
}
sparseResult.Negate(sparseResult);
var rowPointers = _storage.RowPointers;
var columnIndices = _storage.ColumnIndices;
var values = _storage.Values;
for (var i = 0; i < RowCount; i++)
{
var endIndex = rowPointers[i + 1];
for (var j = rowPointers[i]; j < endIndex; j++)
{
var columnIndex = columnIndices[j];
var resVal = sparseResult.At(i, columnIndex) + values[j];
result.At(i, columnIndex, resVal);
}
}
}
}
示例14: DoPointwiseMultiply
/// <summary>
/// Pointwise multiplies this matrix with another matrix and stores the result into the result matrix.
/// </summary>
/// <param name="other">The matrix to pointwise multiply with this one.</param>
/// <param name="result">The matrix to store the result of the pointwise multiplication.</param>
protected override void DoPointwiseMultiply(Matrix<float> other, Matrix<float> result)
{
result.Clear();
var rowPointers = _storage.RowPointers;
var columnIndices = _storage.ColumnIndices;
var values = _storage.Values;
for (var i = 0; i < RowCount; i++)
{
var endIndex = rowPointers[i + 1];
for (var j = rowPointers[i]; j < endIndex; j++)
{
var resVal = values[j]*other.At(i, columnIndices[j]);
if (resVal != 0f)
{
result.At(i, columnIndices[j], resVal);
}
}
}
}
示例15: DoPointwiseDivide
/// <summary>
/// Pointwise divide this matrix by another matrix and stores the result into the result matrix.
/// </summary>
/// <param name="divisor">The matrix to pointwise divide this one by.</param>
/// <param name="result">The matrix to store the result of the pointwise division.</param>
protected override void DoPointwiseDivide(Matrix<float> divisor, Matrix<float> result)
{
result.Clear();
var rowPointers = _storage.RowPointers;
var columnIndices = _storage.ColumnIndices;
var values = _storage.Values;
for (var i = 0; i < RowCount; i++)
{
var endIndex = rowPointers[i + 1];
for (var j = rowPointers[i]; j < endIndex; j++)
{
if (values[j] != 0f)
{
result.At(i, columnIndices[j], values[j]/divisor.At(i, columnIndices[j]));
}
}
}
}