本文整理匯總了C#中System.Matrix.SubMatrix方法的典型用法代碼示例。如果您正苦於以下問題:C# Matrix.SubMatrix方法的具體用法?C# Matrix.SubMatrix怎麽用?C# Matrix.SubMatrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Matrix
的用法示例。
在下文中一共展示了Matrix.SubMatrix方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: MakePrediction
/// <summary>
/// Make some classification predictions on a toy dataset using a SVC
///
/// If binary is True restrict to a binary classification problem instead of a
/// multiclass classification problem
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <param name="binary"></param>
private static Tuple<int[], int[], Matrix<double>> MakePrediction(
Matrix<double> x = null,
int[] y = null,
bool binary = false)
{
if (x == null && y == null)
{
// import some data to play with
var dataset = IrisDataset.Load();
x = dataset.Data;
y = dataset.Target;
}
if (binary)
{
// restrict to a binary classification task
x = x.RowsAt(y.Indices(v => v < 2));
y = y.Where(v => v < 2).ToArray();
}
int nSamples = x.RowCount;
int nFeatures = x.ColumnCount;
var rng = new Random(37);
int[] p = Shuffle(rng, Enumerable.Range(0, nSamples).ToArray());
x = x.RowsAt(p);
y = y.ElementsAt(p);
var half = nSamples/2;
// add noisy features to make the problem harder and avoid perfect results
rng = new Random(0);
x = x.HStack(DenseMatrix.CreateRandom(nSamples, 200, new Normal{RandomSource = rng}));
// run classifier, get class probabilities and label predictions
var clf = new Svc<int>(kernel: Kernel.Linear, probability: true);
clf.Fit(x.SubMatrix(0, half, 0, x.ColumnCount), y.Take(half).ToArray());
Matrix<double> probasPred = clf.PredictProba(x.SubMatrix(half, x.RowCount - half, 0, x.ColumnCount));
if (binary)
{
// only interested in probabilities of the positive case
// XXX: do we really want a special API for the binary case?
probasPred = probasPred.SubMatrix(0, probasPred.RowCount, 1, 1);
}
var yPred = clf.Predict(x.SubMatrix(half, x.RowCount - half, 0, x.ColumnCount));
var yTrue = y.Skip(half).ToArray();
return Tuple.Create(yTrue, yPred, probasPred);
}
示例2: OneVsOneCoef
/// <summary>
/// Generate primal coefficients from dual coefficients
/// for the one-vs-one multi class LibSVM in the case
/// of a linear kernel.
/// </summary>
private static Vector<double>[] OneVsOneCoef(
Matrix<double> dualCoef,
int[] nSupport,
Matrix<double> supportVectors)
{
// get 1vs1 weights for all n*(n-1) classifiers.
// this is somewhat messy.
// shape of dual_coef_ is nSV * (n_classes -1)
// see docs for details
int nClass = dualCoef.RowCount + 1;
// XXX we could do preallocation of coef but
// would have to take care in the sparse case
var coef = new List<Vector<double>>();
var svLocs = CumSum(new[] { 0 }.Concat(nSupport).ToArray());
for (int class1 = 0; class1 < nClass; class1++)
{
// SVs for class1:
var sv1 = supportVectors.SubMatrix(
svLocs[class1],
svLocs[class1 + 1] - svLocs[class1],
0,
supportVectors.ColumnCount);
for (int class2 = class1 + 1; class2 < nClass; class2++)
{
// SVs for class1:
var sv2 = supportVectors.SubMatrix(
svLocs[class2],
svLocs[class2 + 1] - svLocs[class2],
0,
supportVectors.ColumnCount);
// dual coef for class1 SVs:
var alpha1 = dualCoef.Row(class2 - 1).SubVector(
svLocs[class1],
svLocs[class1 + 1] - svLocs[class1]);
// dual coef for class2 SVs:
var alpha2 = dualCoef.Row(class1).SubVector(
svLocs[class2],
svLocs[class2 + 1] - svLocs[class2]);
// build weight for class1 vs class2
coef.Add((alpha1 * sv1) + (alpha2 * sv2));
}
}
return coef.ToArray();
}
示例3: UpdateCameraMatrix
void UpdateCameraMatrix(Matrix<double> camera, CameraIndex index)
{
var RQ = camera.SubMatrix(0, 3, 0, 3).QR();
var calib = RQ.R;
if(Math.Abs(calib[2, 2] - 1) > 1e-6)
{
double scale = calib[2, 2];
camera.MultiplyThis(scale);
// NotifyPropertyChanged("CameraLeft");
RQ = camera.SubMatrix(0, 3, 0, 3).QR();
}
calib = RQ.R;
var rot = RQ.Q;
// If fx < 0 then set fx = -fx and [r11,r12,r13] = -[r11,r12,r13]
// As first row of rotation matrix is multiplied only with fx, then changing sign of both
// fx and this row won't change matrix M = K*R, and so camera matrix (same with fy, but we need to change skew also)
if(calib[0, 0] < 0)
{
calib[0, 0] = -calib[0, 0];
rot[0, 0] = -rot[0, 0];
rot[0, 1] = -rot[0, 1];
rot[0, 2] = -rot[0, 2];
}
if(calib[1, 1] < 0)
{
calib[1, 1] = -calib[1, 1];
calib[0, 1] = -calib[0, 1];
rot[1, 0] = -rot[1, 0];
rot[1, 1] = -rot[1, 1];
rot[1, 2] = -rot[1, 2];
}
var trans = -camera.SubMatrix(0, 3, 0, 3).Inverse().Multiply(camera.Column(3));
SetCalibrationMatrix(index, calib);
SetRotationMatrix(index, rot);
SetTranslationVector(index, trans);
ComputeEssentialFundamental();
}
示例4: Diff
/// <summary>
/// Calculates the difference on the magnitude spectrogram
/// </summary>
/// <param name="spec">the magnitude spectrogram</param>
/// <param name="pos">only keep positive values</param>
/// <param name="diffFrames">calculate the difference to the N-th previous frame</param>
public Matrix<float> Diff(Matrix<float> spec, bool pos=false, int diffFrames=0)
{
var diff = _allocator.GetFloatMatrix(spec.RowCount, spec.ColumnCount);
//var diff = Matrix<float>.Build.SameAs(spec);
if (diffFrames == 0) diffFrames = _diffFrames;
//calculate the diff
var subMatrix = spec.SubMatrix(diffFrames, spec.RowCount - diffFrames, 0, spec.ColumnCount).Subtract(spec.SubMatrix(0, spec.RowCount - diffFrames, 0, spec.ColumnCount));
diff.SetSubMatrix(diffFrames, 0, subMatrix);
if (pos)
diff = diff.PointwiseMultiply(diff.Map(f => (float)((f > 0) ? 1 : -1)));
return diff;
}
示例5: localizeLink
//This is only used by the Part Exporter, but it localizes the link to the Origin_global coordinate system
public void localizeLink(link Link, Matrix<double> GlobalTransform)
{
Matrix<double> GlobalTransformInverse = GlobalTransform.Inverse();
Matrix<double> linkCoMTransform = ops.getTranslation(Link.Inertial.Origin.xyz);
Matrix<double> localLinkCoMTransform = GlobalTransformInverse * linkCoMTransform;
Matrix<double> linkVisualTransform = ops.getTransformation(Link.Visual.Origin.xyz, Link.Visual.Origin.rpy);
Matrix<double> localVisualTransform = GlobalTransformInverse * linkVisualTransform;
Matrix<double> linkCollisionTransform = ops.getTransformation(Link.Collision.Origin.xyz, Link.Collision.Origin.rpy);
Matrix<double> localCollisionTransform = GlobalTransformInverse * linkCollisionTransform;
// The linear array in Link.Inertial.Inertia.Moment is in row major order, but this matrix constructor uses column major order
// It's a rotation matrix, so this shouldn't matter. If it does, just transpose linkGlobalMomentInertia
// These three matrices are 3x3 as opposed to the 4x4 transformation matrices above. You're welcome for the confusion.
Matrix<double> linkGlobalMomentInertia = new DenseMatrix(3, 3, Link.Inertial.Inertia.Moment);
Matrix<double> GlobalRotMat = GlobalTransform.SubMatrix(0, 3, 0, 3);
Matrix<double> linkLocalMomentInertia = GlobalRotMat.Inverse() * linkGlobalMomentInertia;
Link.Inertial.Origin.xyz = ops.getXYZ(localLinkCoMTransform);
Link.Inertial.Origin.rpy = new double[] { 0, 0, 0 };
// Wait are you saying that even though the matrix was trasposed from column major order, you are writing it in row-major order here.
// Yes, yes I am.
double[] moment = linkLocalMomentInertia.ToRowWiseArray();
Link.Inertial.Inertia.setMomentMatrix(moment);
Link.Collision.Origin.xyz = ops.getXYZ(localCollisionTransform);
Link.Collision.Origin.rpy = ops.getRPY(localCollisionTransform);
Link.Visual.Origin.rpy = ops.getXYZ(localVisualTransform);
Link.Visual.Origin.xyz = ops.getRPY(localVisualTransform);
}
示例6: backwardPass
/// <summary>
/// Backward pass, used for backprop.
/// Propagates the input from the forward pass back into the network.
/// </summary>
/// <param name="pat">input pattern</param>
/// <param name="targets">targets for the input</param>
private void backwardPass(Matrix<float> pat, Matrix<float> targets)
{
/*
% backward pass, MATLAB code
delta_o = (out - targets) .* ((1 + out) .* (1 - out)) * 0.5;
delta_h = (v' * delta_o) .* ((1 + hout) .* (1 - hout)) * 0.5;
delta_h = delta_h(1:hidden, :);
*/
Matrix<float> r1= (net_out.Add(new DenseMatrix(net_out.RowCount, net_out.ColumnCount, 1.0f))).PointwiseMultiply(new DenseMatrix(net_out.RowCount, net_out.ColumnCount, 1.0f).Subtract(net_out));
net_deltao = (net_out - targets).PointwiseMultiply(r1).Multiply(0.5f);
Matrix<float> r2 = (net_hout.Add(new DenseMatrix(net_hout.RowCount, net_hout.ColumnCount, 1.0f))).PointwiseMultiply(new DenseMatrix(net_hout.RowCount, net_hout.ColumnCount, 1.0f).Subtract(net_hout));
net_deltah = (weights2.Transpose().Multiply(net_deltao)).PointwiseMultiply(r2).Multiply(0.5f);
net_deltah = net_deltah.SubMatrix(0, HiddenNodes, 0, pat.ColumnCount);
}
示例7: Test_EstimateCameraMatrix_NoisedLinear
public void Test_EstimateCameraMatrix_NoisedLinear()
{
PrepareCameraMatrix();
var points = GenerateCalibrationPoints_Random();
PrepareCalibrator(
AddNoise(points, _varianceReal, _varianceImage));
_calib.HomoPoints();
_calib.NormalizeImagePoints();
_calib.NormalizeRealPoints();
_calib.CameraMatrix = _calib.FindLinearEstimationOfCameraMatrix();
_calib.DenormaliseCameraMatrix();
_calib.DecomposeCameraMatrix();
_eCM = _calib.CameraMatrix;
double scaleK = 1.0 / _calib.CameraInternalMatrix[2, 2];
_eCM.MultiplyThis(-scaleK);
var eK = _calib.CameraInternalMatrix.Multiply(scaleK);
var eR = -_calib.CameraRotationMatrix;
var eC = -(_eCM.SubMatrix(0, 3, 0, 3).Inverse() * _eCM.Column(3));
Matrix<double> eExt = new DenseMatrix(3, 4);
eExt.SetSubMatrix(0, 0, eR);
eExt.SetColumn(3, -eR * eC);
var eCM = eK * eExt;
var errVec = _CM.PointwiseDivide_NoNaN(_eCM);
double err = errVec.L2Norm();
Assert.IsTrue(
Math.Abs(err - Math.Sqrt(12)) < Math.Sqrt(12) / 50.0 || // max 2% diffrence
(_eCM - _CM).FrobeniusNorm() < 1e-3);
for(int p = 0; p < _pointsCount; ++p)
{
var cp = points[p];
Vector<double> rp = new DenseVector(4);
rp[0] = cp.RealX;
rp[1] = cp.RealY;
rp[2] = cp.RealZ;
rp[3] = 1.0;
var imagePoint = _eCM * rp;
Vector2 ip = new Vector2(imagePoint[0] / imagePoint[2], imagePoint[1] / imagePoint[2]);
Assert.IsTrue((ip - cp.Img).Length() < cp.Img.Length() / 10.0);
}
}
示例8: Test_EstimateCameraMatrix_Minimised
public void Test_EstimateCameraMatrix_Minimised()
{
PrepareCameraMatrix();
var points = GenerateCalibrationPoints_Random(100);
var noisedPoints = AddNoise(points, _varianceReal, _varianceImage, 200);
PrepareCalibrator(noisedPoints);
_calib.HomoPoints();
_calib.NormalizeImagePoints();
_calib.NormalizeRealPoints();
_calib._pointsNormalised = true;
_calib.CameraMatrix = _calib.FindLinearEstimationOfCameraMatrix();
// _calib.FindNormalisedVariances();
_calib.DenormaliseCameraMatrix();
_calib._pointsNormalised = false;
_eCM = _calib.CameraMatrix;
double totalDiff = 0.0;
for(int p = 0; p < _pointsCount; ++p)
{
var cp = points[p];
Vector<double> rp = new DenseVector(4);
rp[0] = cp.RealX;
rp[1] = cp.RealY;
rp[2] = cp.RealZ;
rp[3] = 1.0;
var imagePoint = _eCM * rp;
Vector2 ip = new Vector2(imagePoint[0] / imagePoint[2], imagePoint[1] / imagePoint[2]);
totalDiff += (ip - cp.Img).Length();
Assert.IsTrue((ip - cp.Img).Length() < 1.0,
"Point after linear estimation too far : " + (ip - cp.Img).Length());
}
_calib.HomoPoints();
_calib.NormalizeImagePoints();
_calib.NormalizeRealPoints();
_calib.CameraMatrix = _calib.FindLinearEstimationOfCameraMatrix();
_calib._pointsNormalised = true;
_calib.FindNormalisedVariances();
_calib.UseCovarianceMatrix = true;
var lecm = _eCM.Clone();
// Disturb camera matrix a little
// _calib.CameraMatrix = AddNoise(_calib.CameraMatrix);
_calib._miniAlg.DoComputeJacobianNumerically = true;
_calib._miniAlg.NumericalDerivativeStep = 1e-4;
_calib.MinimizeError();
// _calib.DenormaliseCameraMatrix();
_calib.DecomposeCameraMatrix();
_eCM = _calib.CameraMatrix;
var errVec = _eCM.PointwiseDivide_NoNaN(lecm);
double err = errVec.L2Norm();
double scaleK = 1.0 / _calib.CameraInternalMatrix[2, 2];
_eCM.MultiplyThis(-scaleK);
var eK = _calib.CameraInternalMatrix.Multiply(scaleK);
var eR = -_calib.CameraRotationMatrix;
var eC = -(_eCM.SubMatrix(0, 3, 0, 3).Inverse() * _eCM.Column(3));
Matrix<double> eExt = new DenseMatrix(3, 4);
eExt.SetSubMatrix(0, 0, eR);
eExt.SetColumn(3, -eR * eC);
var eCM = eK * eExt;
// var errVec = _CM.PointwiseDivide_NoNaN(_eCM);
// double err = errVec.L2Norm();
// Assert.IsTrue(
// Math.Abs(err - Math.Sqrt(12)) < Math.Sqrt(12) / 1000.0 || // max 0.1% diffrence
// (_eCM - _CM).FrobeniusNorm() < 1e-3);
double estDiff = 0;
for(int p = 0; p < _pointsCount; ++p)
{
var cp = points[p];
Vector<double> rp = new DenseVector(4);
rp[0] = cp.RealX;
rp[1] = cp.RealY;
rp[2] = cp.RealZ;
rp[3] = 1.0;
var imagePoint = _eCM * rp;
Vector2 ip = new Vector2(imagePoint[0] / imagePoint[2], imagePoint[1] / imagePoint[2]);
estDiff += (ip - cp.Img).Length();
Assert.IsTrue((ip - cp.Img).Length() < 1.5,
"Point after error minimalisation too far : " + (ip - cp.Img).Length());
}
var minialg = _calib._miniAlg;
// Test conovergence :
// ||mX-rX|| = ||mX-eX|| + ||rX-eX|| (or squared??)
// rX - real point from 'points'
// mX - measured point, noised
// eX = estimated X from result vector for 3d points and ePeX for image point
double len2_mr = 0;
//.........這裏部分代碼省略.........