本文整理匯總了C#中System.Matrix.SetIdentity方法的典型用法代碼示例。如果您正苦於以下問題:C# Matrix.SetIdentity方法的具體用法?C# Matrix.SetIdentity怎麽用?C# Matrix.SetIdentity使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Matrix
的用法示例。
在下文中一共展示了Matrix.SetIdentity方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: SyntheticData
public SyntheticData()
{
state = new Matrix<float>(4, 1);
state[0, 0] = Cursor.Position.X; // x-pos
state[1, 0] = Cursor.Position.Y; // y-pos
state[2, 0] = 0f; // x-velocity
state[3, 0] = 0f; // y-velocity
transitionMatrix = new Matrix<float>(new float[,]
{
{1, 0, 1, 0},
{0, 1, 0, 1},
{0, 0, 1, 0},
{0, 0, 0, 1}
});
measurementMatrix = new Matrix<float>(new float[,]
{
{ 1, 0, 0, 0 },
{ 0, 1, 0, 0 }
});
measurementMatrix.SetIdentity();
processNoise = new Matrix<float>(4, 4);
processNoise.SetIdentity(new MCvScalar(1.0e-4));
measurementNoise = new Matrix<float>(2, 2);
measurementNoise.SetIdentity(new MCvScalar(1.5e-1));
errorCovariancePost = new Matrix<float>(4, 4);
errorCovariancePost.SetIdentity();
}
示例2: SyntheticData
public SyntheticData()
{
state = new Matrix<float>(4, 1);
state[0, 0] = 0f; // x-pos
state[1, 0] = 0f; // y-pos
state[2, 0] = 0f; // x-velocity
state[3, 0] = 0f; // y-velocity
transitionMatrix = new Matrix<float>(new float[,]
{
{1, 0, 1, 0}, // x-pos, y-pos, x-velocity, y-velocity
{0, 1, 0, 1},
{0, 0, 1, 0},
{0, 0, 0, 1}
});
measurementMatrix = new Matrix<float>(new float[,]
{
{ 1, 0, 0, 0 },
{ 0, 1, 0, 0 }
});
measurementMatrix.SetIdentity();
processNoise = new Matrix<float>(4, 4); //Linked to the size of the transition matrix
processNoise.SetIdentity(new MCvScalar(1.0e-4)); //The smaller the value the more resistance to noise
measurementNoise = new Matrix<float>(2, 2); //Fixed accordiong to input data
measurementNoise.SetIdentity(new MCvScalar(1.0e-1));
errorCovariancePost = new Matrix<float>(4, 4); //Linked to the size of the transition matrix
errorCovariancePost.SetIdentity();
}
示例3: Get2DTranslationMatrix
public static Matrix<double> Get2DTranslationMatrix(double x, double y)
{
Matrix<double> m = new Matrix<double>(3, 3);
m.SetIdentity();
m[0, 3] = x;
m[1, 3] = y;
return m;
}
示例4: TestInvert
public void TestInvert()
{
Matrix<Single> m = new Matrix<Single>(3, 3);
Matrix<Single> mInvert = new Matrix<Single>(3, 3);
m.SetIdentity();
CvInvoke.Invert(m, mInvert, Emgu.CV.CvEnum.DecompMethod.LU);
EmguAssert.IsTrue(m.Equals(mInvert));
}
示例5: TestSolve
public void TestSolve()
{
Matrix<Single> lhs = new Matrix<Single>(3, 3);
lhs.SetIdentity();
Matrix<Single> rhs = new Matrix<Single>(new float[,] { { 0.1f }, { 0.2f }, { 0.5f } });
Matrix<Single> result = new Matrix<float>(3, 1);
CvInvoke.Solve(lhs, rhs, result, CvEnum.DecompMethod.LU);
EmguAssert.AreEqual(rhs[0, 0], result[0, 0]);
EmguAssert.AreEqual(rhs[1, 0], result[1, 0]);
EmguAssert.AreEqual(rhs[2, 0], result[2, 0]);
}
示例6: ConvertToHomogenous
public static Matrix<double> ConvertToHomogenous(Matrix<double> matrix)
{
if (matrix.Rows < 2 || matrix.Cols < 2 || (matrix.Rows != matrix.Cols))
{
throw new ArgumentException("symmetric matrix > 1x1 expected");
}
Matrix<double> m = new Matrix<double>(matrix.Rows + 1, matrix.Cols + 1);
m.SetIdentity();
for (int row = 0; row < matrix.Rows; row++)
{
for (int col = 0; col < matrix.Cols; col++)
{
m[row, col] = matrix[row, col];
}
}
return m;
}
示例7: KalmanFilter
private bool isInitialized; // true if any data has been fed
public KalmanFilter(int variables)
{
variablesCount = variables;
int measurementVariables = variables;
int dynamicVariables = variables * 2;
float[] state = new float[dynamicVariables];
for (int i = 0; i < dynamicVariables; ++i)
state[i] = 0.0f;
Matrix<float> transitionMatrix = new Matrix<float>(dynamicVariables, dynamicVariables);
transitionMatrix.SetZero();
for (int i = 0; i < dynamicVariables; ++i)
{
transitionMatrix[i, i] = 1.0f;
if (i >= measurementVariables)
transitionMatrix[i - measurementVariables, i] = 1;
}
Matrix<float> measurementMatrix = new Matrix<float>(measurementVariables, dynamicVariables);
measurementMatrix.SetZero();
for (int i = 0; i < measurementVariables; ++i)
measurementMatrix[i, i] = 1.0f;
Matrix<float> processNoise = new Matrix<float>(dynamicVariables, dynamicVariables);
processNoise.SetIdentity(new MCvScalar(1));//1.0e-4));
Matrix<float> measurementNoise = new Matrix<float>(measurementVariables, measurementVariables);
measurementNoise.SetIdentity(new MCvScalar(4));//1.0e-1));
Matrix<float> errorCovariancePost = new Matrix<float>(dynamicVariables, dynamicVariables);
errorCovariancePost.SetIdentity();
kalman = new Kalman(dynamicVariables, measurementVariables, 0);
kalman.CorrectedState = new Matrix<float>(state);
kalman.TransitionMatrix = transitionMatrix;
kalman.MeasurementNoiseCovariance = measurementNoise;
kalman.ProcessNoiseCovariance = processNoise;
kalman.ErrorCovariancePost = errorCovariancePost;
kalman.MeasurementMatrix = measurementMatrix;
}
示例8: SyntheticData
public SyntheticData(float strengthMatrix, double processNoise, double measurementNoise)
{
var newStrength = strengthMatrix;
var newProcessNoise = processNoise;
var newMeasurementNoise = measurementNoise;
if (strengthMatrix > 1.0f || strengthMatrix < 0.0f)
newStrength = 0.6f;
if (processNoise > 1.0e-1 || processNoise < 1.0e-4)
newProcessNoise = 1.0e-2;
if (measurementNoise > 1.0e-1 || measurementNoise < 1.0e-4)
newMeasurementNoise = 1.0e-1;
State = new Matrix<float>(4, 1);
State[0, 0] = 0f; // x-pos
State[1, 0] = 0f; // y-pos
State[2, 0] = 0f; // x-velocity
State[3, 0] = 0f; // y-velocity
TransitionMatrix = new Matrix<float>(new[,]
{
{newStrength, 0, 1, 0},
{0, newStrength, 0, 1},
{0, 0, 1, 0},
{0, 0, 0, 1}
});
MeasurementMatrix = new Matrix<float>(new float[,]
{
{ 1, 0, 0, 0 },
{ 0, 1, 0, 0 }
});
MeasurementMatrix.SetIdentity();
ProcessNoise = new Matrix<float>(4, 4); //Linked to the size of the transition matrix
ProcessNoise.SetIdentity(new MCvScalar(newProcessNoise)); //The smaller the value the more resistance to noise
MeasurementNoise = new Matrix<float>(2, 2); //Fixed accordiong to input data
MeasurementNoise.SetIdentity(new MCvScalar(newMeasurementNoise)); //larger the value more resitance to noise and the less responsive to velocity
ErrorCovariancePost = new Matrix<float>(4, 4); //Linked to the size of the transition matrix
ErrorCovariancePost.SetIdentity();
}
示例9: Kalman
/// <summary>
/// Allocates CvKalman and all its matrices and initializes them somehow.
/// </summary>
/// <param name="dynamParams">dimensionality of the state vector</param>
/// <param name="measureParams">dimensionality of the measurement vector </param>
/// <param name="controlParams">dimensionality of the control vector </param>
public Kalman(int dynamParams, int measureParams, int controlParams)
{
_kalman.DP = dynamParams;
_kalman.MP = measureParams;
_kalman.CP = controlParams;
PredictedState = new Matrix<float>(dynamParams, 1);
CorrectedState = new Matrix<float>(dynamParams, 1);
TransitionMatrix = new Matrix<float>(dynamParams, dynamParams);
TransitionMatrix.SetIdentity();
ProcessNoiseCovariance = new Matrix<float>(dynamParams, dynamParams);
ProcessNoiseCovariance.SetIdentity();
MeasurementMatrix = new Matrix<float>(measureParams, dynamParams);
MeasurementNoiseCovariance = new Matrix<float>(measureParams, measureParams);
MeasurementNoiseCovariance.SetIdentity();
ErrorCovariancePre = new Matrix<float>(dynamParams, dynamParams);
ErrorCovariancePost = new Matrix<float>(dynamParams, dynamParams);
Gain = new Matrix<float>(dynamParams, measureParams);
if (controlParams > 0)
{
ControlMatrix = new Matrix<float>(dynamParams, controlParams);
}
_temp1 = new Matrix<float>(dynamParams, dynamParams);
_kalman.temp1 = _temp1.Ptr;
_temp2 = new Matrix<float>(measureParams, dynamParams);
_kalman.temp2 = _temp2.Ptr;
_temp3 = new Matrix<float>(measureParams, measureParams);
_kalman.temp3 = _temp3.Ptr;
_temp4 = new Matrix<float>(measureParams, dynamParams);
_kalman.temp4 = _temp4.Ptr;
_temp5 = new Matrix<float>(measureParams, 1);
_kalman.temp5 = _temp5.Ptr;
//_kalman.Temp1 = _temp1.MCvMat.data;
//_kalman.Temp2 = _temp2.MCvMat.data;
}
示例10: TestCudaWarpPerspective
public void TestCudaWarpPerspective()
{
if (!CudaInvoke.HasCuda)
return;
Matrix<float> transformation = new Matrix<float>(3, 3);
transformation.SetIdentity();
Image<Gray, byte> image = new Image<Gray, byte>(480, 320);
image.SetRandNormal(new MCvScalar(), new MCvScalar(255));
using (GpuMat cudaImage = new GpuMat(image))
using (CudaImage<Gray, Byte> resultCudaImage = new CudaImage<Gray, byte>())
{
CudaInvoke.WarpPerspective(cudaImage, resultCudaImage, transformation, cudaImage.Size, CvEnum.Inter.Cubic, CvEnum.BorderType.Default, new MCvScalar(), null);
}
}
示例11: Recompute2
// this is directly from the wikipedia page on Kabsh Algorithm
public void Recompute2()
{
var p = P;
var q = Q;
//1. subtract centroids
for (int i = 0; i < p.Rows; i++) {
p[i, 0] -= SourceCentroid[0, 0];
p[i, 1] -= SourceCentroid[1, 0];
q[i, 0] -= DestCentroid[0, 0];
q[i, 1] -= DestCentroid[1, 0];
}
//2. compute covariance matrix
var a = p.Transpose()*q;
//3. compute rotation matrix
/* perform svd where A = V S WT */
Matrix<double> V = new Matrix<double>(2, 2);
Matrix<double> S = new Matrix<double>(2, 2);
Matrix<double> W = new Matrix<double>(2, 2);
CvInvoke.cvSVD(a.Ptr, S.Ptr, V.Ptr, W.Ptr, SVD_TYPE.CV_SVD_DEFAULT);
// Deal with reflection matrix
Matrix<double> m = new Matrix<double>(2, 2);
m.SetIdentity(new MCvScalar(1));
m[1,1] = ((W*V.Transpose()).Det<0) ? -1 : 1;
// Comput the rotation matrix
Rotation = W*m*V.Transpose();
//Offset = DestCentroid - (Rotation * SourceCentroid);
Offset = DestCentroid - SourceCentroid;
Console.WriteLine("Rotaiton Matrix - Angle ="+Angle);
Console.WriteLine(FormatMatrix(Rotation));
}
示例12: Get3DTranslationMatrix
public static Matrix<double> Get3DTranslationMatrix(double x, double y, double z)
{
Matrix<double> m = new Matrix<double>(4, 4);
m.SetIdentity();
m[0, 3] = x;
m[1, 3] = y;
m[2, 3] = z;
return m;
}
示例13: TestStereoSGBMCorrespondence
public void TestStereoSGBMCorrespondence()
{
Image<Gray, Byte> left = new Image<Gray, byte>("left.jpg");
Image<Gray, Byte> right = new Image<Gray, byte>("right.jpg");
Size size = left.Size;
Image<Gray, Int16> disparity = new Image<Gray, Int16>(size);
StereoSGBM bm = new StereoSGBM(10, 64, 0, 0, 0, 0, 0, 0, 0, 0, false);
Stopwatch watch = Stopwatch.StartNew();
bm.FindStereoCorrespondence(left, right, disparity);
watch.Stop();
Trace.WriteLine(String.Format("Time used: {0} milliseconds", watch.ElapsedMilliseconds));
Matrix<double> q = new Matrix<double>(4, 4);
q.SetIdentity();
MCvPoint3D32f[] points = PointCollection.ReprojectImageTo3D(disparity * (-16), q);
float min = (float)1.0e10, max = 0;
foreach (MCvPoint3D32f p in points)
{
if (p.z < min) min = p.z;
else if (p.z > max) max = p.z;
}
Trace.WriteLine(String.Format("Min : {0}\r\nMax : {1}", min, max));
}
示例14: SyntheticData
public SyntheticData()
{
_state = new Matrix<float>(2, 1);
// start with random position and velocity
//_state.SetRandNormal(new MCvScalar(0.0), new MCvScalar(1.0));
_state[0, 0] = 0.0f;
_state[1, 0] = 0.05f;
_measurementNoise = new Matrix<float>(1, 1);
_measurementNoise.SetIdentity(new MCvScalar(1.0e-2));
_processNoise = new Matrix<float>(2, 2);
_processNoise.SetIdentity(new MCvScalar(1.0e-5));
_errorCovariancePost = new Matrix<float>(2, 2);
_errorCovariancePost.SetIdentity();
_transitionMatrix = new Matrix<float>(new float[,] { { 1, 1 }, { 0, 1 } }); // phi_t = phi_{t-1} + delta_phi
_measurementMatrix = new Matrix<float>(new float[,] { {1, 0}});
_measurementMatrix.SetIdentity(); //the measurement is [ phi ]
}
示例15: TestStereoSGBMCorrespondence
public void TestStereoSGBMCorrespondence()
{
Image<Gray, Byte> left = EmguAssert.LoadImage<Gray, byte>("aloeL.jpg");
Image<Gray, Byte> right = EmguAssert.LoadImage<Gray, byte>("aloeR.jpg");
Size size = left.Size;
Image<Gray, Int16> disparity = new Image<Gray, Int16>(size);
StereoSGBM bm = new StereoSGBM(10, 64, 0, 0, 0, 0, 0, 0, 0, 0, StereoSGBM.Mode.SGBM);
Stopwatch watch = Stopwatch.StartNew();
bm.Compute(left, right, disparity);
watch.Stop();
EmguAssert.WriteLine(String.Format("Time used: {0} milliseconds", watch.ElapsedMilliseconds));
Matrix<double> q = new Matrix<double>(4, 4);
q.SetIdentity();
Image<Gray, Int16> disparityScaled = disparity * (-16);
MCvPoint3D32f[] points = PointCollection.ReprojectImageTo3D(disparityScaled.Mat, q);
float min = (float) 1.0e10, max = 0;
foreach (MCvPoint3D32f p in points)
{
if (p.Z < min)
min = p.Z;
else if (p.Z > max)
max = p.Z;
}
EmguAssert.WriteLine(String.Format("Min : {0}\r\nMax : {1}", min, max));
}