本文整理汇总了Python中molecule.Molecule.elem方法的典型用法代码示例。如果您正苦于以下问题:Python Molecule.elem方法的具体用法?Python Molecule.elem怎么用?Python Molecule.elem使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类molecule.Molecule
的用法示例。
在下文中一共展示了Molecule.elem方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: fgrad
# 需要导入模块: from molecule import Molecule [as 别名]
# 或者: from molecule.Molecule import elem [as 别名]
def fgrad(x, indicate = False):
""" Calculate the objective function and its derivatives. """
# If the optimization algorithm tries to calculate twice for the same point, do nothing.
# if x == fgrad.x0: return
xyz = independent_vars_to_xyz(x)
# these methods require 3d input
xyzlist = np.array([xyz])
my_bonds = core.bonds(xyzlist, ibonds).flatten()
my_angles = core.angles(xyzlist, iangles).flatten()
my_dihedrals = core.dihedrals(xyzlist, idihedrals, anchor=dihedrals).flatten()
# Deviations of internal coordinates from ideal values.
d1 = w1*(my_bonds - bonds)
d2 = w2*(my_angles - angles)
d3 = w3*(my_dihedrals - dihedrals)
# Include an optional term if we have an anchor point.
if xrefi != None:
d4 = (x - xrefi).flatten() * w1 * w_xref
fgrad.error = np.r_[d1, d2, np.arctan2(np.sin(d3), np.cos(d3)), d4]
else:
fgrad.error = np.r_[d1, d2, np.arctan2(np.sin(d3), np.cos(d3))]
# The objective function contains another contribution from the Morse potential.
fgrad.X = np.dot(fgrad.error, fgrad.error)
d1s = np.dot(d1, d1)
d2s = np.dot(d2, d2)
d3s = np.dot(d3, d3)
M = Molecule()
M.elem = elem
M.xyzs = [np.array(xyz)*10]
if w_morse != 0.0:
EMorse, GMorse = PairwiseMorse(M)
EMorse = EMorse[0]
GMorse = GMorse[0]
else:
EMorse = 0.0
GMorse = np.zeros((n_atoms, 3), dtype=float)
if indicate:
if fgrad.X0 != None:
print ("LSq: %.4f (%+.4f) Distance: %.4f (%+.4f) Angle: %.4f (%+.4f) Dihedral: %.4f (%+.4f) Morse: % .4f (%+.4f)" %
(fgrad.X, fgrad.X - fgrad.X0, d1s, d1s - fgrad.d1s0, d2s, d2s - fgrad.d2s0, d3s, d3s - fgrad.d3s0, EMorse, EMorse - fgrad.EM0)),
else:
print "LSq: %.4f Distance: %.4f Angle: %.4f Dihedral: %.4f Morse: % .4f" % (fgrad.X, d1s, d2s, d3s, EMorse),
fgrad.X0 = fgrad.X
fgrad.d1s0 = d1s
fgrad.d2s0 = d2s
fgrad.d3s0 = d3s
fgrad.EM0 = EMorse
fgrad.X += w_morse*EMorse
# Derivatives of internal coordinates w/r.t. Cartesian coordinates.
d_bonds = core.bond_derivs(xyz, ibonds) * w1
d_angles = core.angle_derivs(xyz, iangles) * w2
d_dihedrals = core.dihedral_derivs(xyz, idihedrals) * w3
if xrefi != None:
# the derivatives of the internal coordinates wrt the cartesian
# this is 2d, with shape equal to n_internal x n_cartesian
d_internal = np.vstack([gxyz_to_independent_vars(d_bonds.reshape((len(ibonds), -1))),
gxyz_to_independent_vars(d_angles.reshape((len(iangles), -1))),
gxyz_to_independent_vars(d_dihedrals.reshape((len(idihedrals), -1))),
np.eye(len(x)) * w1 * w_xref])
else:
# the derivatives of the internal coordinates wrt the cartesian
# this is 2d, with shape equal to n_internal x n_cartesian
d_internal = np.vstack([gxyz_to_independent_vars(d_bonds.reshape((len(ibonds), -1))),
gxyz_to_independent_vars(d_angles.reshape((len(iangles), -1))),
gxyz_to_independent_vars(d_dihedrals.reshape((len(idihedrals), -1)))])
# print fgrad.error.shape, d_internal.shape
# print d_internal.shape
# print xyz_to_independent_vars(d_internal).shape
fgrad.G = 2*np.dot(fgrad.error, d_internal)
fgrad.G += xyz_to_independent_vars(w_morse*GMorse.flatten())