本文整理汇总了Python中mne.io.Raw.pick_types方法的典型用法代码示例。如果您正苦于以下问题:Python Raw.pick_types方法的具体用法?Python Raw.pick_types怎么用?Python Raw.pick_types使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mne.io.Raw
的用法示例。
在下文中一共展示了Raw.pick_types方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_add_channels
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import pick_types [as 别名]
def test_add_channels():
"""Test raw splitting / re-appending channel types
"""
raw = Raw(test_fif_fname).crop(0, 1).load_data()
raw_nopre = Raw(test_fif_fname, preload=False)
raw_eeg_meg = raw.pick_types(meg=True, eeg=True, copy=True)
raw_eeg = raw.pick_types(meg=False, eeg=True, copy=True)
raw_meg = raw.pick_types(meg=True, eeg=False, copy=True)
raw_stim = raw.pick_types(meg=False, eeg=False, stim=True, copy=True)
raw_new = raw_meg.add_channels([raw_eeg, raw_stim], copy=True)
assert_true(
all(ch in raw_new.ch_names
for ch in list(raw_stim.ch_names) + list(raw_meg.ch_names))
)
raw_new = raw_meg.add_channels([raw_eeg], copy=True)
assert_true(ch in raw_new.ch_names for ch in raw.ch_names)
assert_array_equal(raw_new[:, :][0], raw_eeg_meg[:, :][0])
assert_array_equal(raw_new[:, :][1], raw[:, :][1])
assert_true(all(ch not in raw_new.ch_names for ch in raw_stim.ch_names))
# Now test errors
raw_badsf = raw_eeg.copy()
raw_badsf.info['sfreq'] = 3.1415927
raw_eeg = raw_eeg.crop(.5)
assert_raises(AssertionError, raw_meg.add_channels, [raw_nopre])
assert_raises(RuntimeError, raw_meg.add_channels, [raw_badsf])
assert_raises(AssertionError, raw_meg.add_channels, [raw_eeg])
assert_raises(ValueError, raw_meg.add_channels, [raw_meg])
assert_raises(AssertionError, raw_meg.add_channels, raw_badsf)
示例2: test_chpi_subtraction
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import pick_types [as 别名]
def test_chpi_subtraction():
"""Test subtraction of cHPI signals"""
raw = Raw(chpi_fif_fname, allow_maxshield='yes', preload=True)
with catch_logging() as log:
filter_chpi(raw, include_line=False, verbose=True)
assert_true('5 cHPI' in log.getvalue())
# MaxFilter doesn't do quite as well as our algorithm with the last bit
raw.crop(0, 16, copy=False)
raw_c = Raw(sss_hpisubt_fname, preload=True).crop(0, 16, copy=False)
raw_c.pick_types(meg=True, eeg=True, eog=True, ecg=True, stim=True,
misc=True, copy=False) # remove cHPI status chans
assert_meg_snr(raw, raw_c, 143, 624)
# Degenerate cases
raw_nohpi = Raw(test_fif_fname, preload=True)
assert_raises(RuntimeError, filter_chpi, raw_nohpi)
# When MaxFliter downsamples, like::
# $ maxfilter -nosss -ds 2 -f test_move_anon_raw.fif \
# -o test_move_anon_ds2_raw.fif
# it can strip out some values of info, which we emulate here:
raw = Raw(chpi_fif_fname, allow_maxshield='yes')
raw.crop(0, 1, copy=False).load_data()
raw.resample(600., npad='auto')
raw.info['buffer_size_sec'] = np.float64(2.)
raw.info['lowpass'] = 200.
del raw.info['maxshield']
del raw.info['hpi_results'][0]['moments']
del raw.info['hpi_subsystem']['event_channel']
with catch_logging() as log:
filter_chpi(raw, verbose=True)
assert_true('2 cHPI' in log.getvalue())
示例3: test_chpi_subtraction
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import pick_types [as 别名]
def test_chpi_subtraction():
"""Test subtraction of cHPI signals"""
raw = Raw(chpi_fif_fname, allow_maxshield="yes", preload=True)
with catch_logging() as log:
filter_chpi(raw, include_line=False, verbose=True)
assert_true("5 cHPI" in log.getvalue())
# MaxFilter doesn't do quite as well as our algorithm with the last bit
raw.crop(0, 16, copy=False)
# remove cHPI status chans
raw_c = Raw(sss_hpisubt_fname).crop(0, 16, copy=False).load_data()
raw_c.pick_types(meg=True, eeg=True, eog=True, ecg=True, stim=True, misc=True)
assert_meg_snr(raw, raw_c, 143, 624)
# Degenerate cases
raw_nohpi = Raw(test_fif_fname, preload=True)
assert_raises(RuntimeError, filter_chpi, raw_nohpi)
# When MaxFliter downsamples, like::
# $ maxfilter -nosss -ds 2 -f test_move_anon_raw.fif \
# -o test_move_anon_ds2_raw.fif
# it can strip out some values of info, which we emulate here:
raw = Raw(chpi_fif_fname, allow_maxshield="yes")
with warnings.catch_warnings(record=True): # uint cast suggestion
raw = raw.crop(0, 1).load_data().resample(600.0, npad="auto")
raw.info["buffer_size_sec"] = np.float64(2.0)
raw.info["lowpass"] = 200.0
del raw.info["maxshield"]
del raw.info["hpi_results"][0]["moments"]
del raw.info["hpi_subsystem"]["event_channel"]
with catch_logging() as log:
filter_chpi(raw, verbose=True)
assert_true("2 cHPI" in log.getvalue())
示例4: test_chpi_subtraction
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import pick_types [as 别名]
def test_chpi_subtraction():
"""Test subtraction of cHPI signals"""
raw = Raw(chpi_fif_fname, allow_maxshield='yes', preload=True)
filter_chpi(raw, include_line=False)
# MaxFilter doesn't do quite as well as our algorithm with the last bit
raw.crop(0, 16, copy=False)
raw_c = Raw(sss_hpisubt_fname, preload=True).crop(0, 16, copy=False)
raw_c.pick_types(meg=True, eeg=True, eog=True, ecg=True, stim=True,
misc=True, copy=False) # remove cHPI status chans
assert_meg_snr(raw, raw_c, 143, 624)
# Degenerate cases
raw_nohpi = Raw(test_fif_fname, preload=True)
assert_raises(RuntimeError, filter_chpi, raw_nohpi)
示例5: test_maxwell_filter_additional
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import pick_types [as 别名]
def test_maxwell_filter_additional():
"""Test processing of Maxwell filtered data"""
# TODO: Future tests integrate with mne/io/tests/test_proc_history
# Load testing data (raw, SSS std origin, SSS non-standard origin)
data_path = op.join(testing.data_path(download=False))
file_name = 'test_move_anon'
raw_fname = op.join(data_path, 'SSS', file_name + '_raw.fif')
with warnings.catch_warnings(record=True): # maxshield
# Use 2.0 seconds of data to get stable cov. estimate
raw = Raw(raw_fname, preload=False, proj=False,
allow_maxshield=True).crop(0., 2., False)
# Get MEG channels, compute Maxwell filtered data
raw.load_data()
raw.pick_types(meg=True, eeg=False)
int_order, ext_order = 8, 3
raw_sss = maxwell.maxwell_filter(raw, int_order=int_order,
ext_order=ext_order)
# Test io on processed data
tempdir = _TempDir()
test_outname = op.join(tempdir, 'test_raw_sss.fif')
raw_sss.save(test_outname)
raw_sss_loaded = Raw(test_outname, preload=True, proj=False,
allow_maxshield=True)
# Some numerical imprecision since save uses 'single' fmt
assert_allclose(raw_sss_loaded._data[:, :], raw_sss._data[:, :],
rtol=1e-6, atol=1e-20)
# Test rank of covariance matrices for raw and SSS processed data
cov_raw = compute_raw_covariance(raw)
cov_sss = compute_raw_covariance(raw_sss)
scalings = None
cov_raw_rank = _estimate_rank_meeg_cov(cov_raw['data'], raw.info, scalings)
cov_sss_rank = _estimate_rank_meeg_cov(cov_sss['data'], raw_sss.info,
scalings)
assert_equal(cov_raw_rank, raw.info['nchan'])
assert_equal(cov_sss_rank, maxwell.get_num_moments(int_order, 0))
示例6: test_maxwell_filter_additional
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import pick_types [as 别名]
def test_maxwell_filter_additional():
"""Test processing of Maxwell filtered data"""
# TODO: Future tests integrate with mne/io/tests/test_proc_history
# Load testing data (raw, SSS std origin, SSS non-standard origin)
data_path = op.join(testing.data_path(download=False))
file_name = "test_move_anon"
raw_fname = op.join(data_path, "SSS", file_name + "_raw.fif")
with warnings.catch_warnings(record=True): # maxshield
# Use 2.0 seconds of data to get stable cov. estimate
raw = Raw(raw_fname, allow_maxshield=True).crop(0.0, 2.0, False)
# Get MEG channels, compute Maxwell filtered data
raw.load_data()
raw.pick_types(meg=True, eeg=False)
int_order = 8
raw_sss = maxwell_filter(raw, origin=mf_head_origin, regularize=None, bad_condition="ignore")
# Test io on processed data
tempdir = _TempDir()
test_outname = op.join(tempdir, "test_raw_sss.fif")
raw_sss.save(test_outname)
raw_sss_loaded = Raw(test_outname, preload=True)
# Some numerical imprecision since save uses 'single' fmt
assert_allclose(raw_sss_loaded[:][0], raw_sss[:][0], rtol=1e-6, atol=1e-20)
# Test rank of covariance matrices for raw and SSS processed data
cov_raw = compute_raw_covariance(raw)
cov_sss = compute_raw_covariance(raw_sss)
scalings = None
cov_raw_rank = _estimate_rank_meeg_cov(cov_raw["data"], raw.info, scalings)
cov_sss_rank = _estimate_rank_meeg_cov(cov_sss["data"], raw_sss.info, scalings)
assert_equal(cov_raw_rank, raw.info["nchan"])
assert_equal(cov_sss_rank, _get_n_moments(int_order))
示例7: cli
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import pick_types [as 别名]
def cli(meg_files, save_path, flat):
'''Convert fif or ds to .mat format'''
common_prefix = split(cprfx(meg_files))[0] + '/'
for meg_file in meg_files:
# click.echo(meg_file)
base, ext = splitext(meg_file)
new_base = base.replace(common_prefix, '')
if flat:
new_base = new_base.replace('/','_')
# click.echo(new_base)
new_base = join(save_path, new_base)
if ext == '.fif':
with nostdout():
raw = Raw_fif(meg_file, preload=True, add_eeg_ref=False)
elif ext == '.ds':
with nostdout():
raw = Raw_ctf(meg_file, preload=True)
else:
click.echo('ERROR: UNKNOWN FORMAT FOR {}'.format(meg_file))
meg_raw = raw.pick_types(meg=True, ref_meg=False)
data, times = meg_raw[:,:]
ch_names = meg_raw.info['ch_names']
la = find_layout(meg_raw.info)
pos = la.pos[:,:2]
pos_filt = np.array([pos[i,:] for i in range(len(pos)) if la.names[i] in ''.join(raw.info['ch_names'])])
# click.echo(pos)
new_path,_ = split(new_base)
if not exists(new_path):
makedirs(new_path)
savemat(new_base + '.mat', {'data': data, 'times': times, 'chnames': ch_names, 'chxy': pos_filt})
示例8: Raw
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import pick_types [as 别名]
subjects_dir = data_path + '/subjects'
label_name = 'Aud-lh'
fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name
###############################################################################
# Read raw data, preload to allow filtering
raw = Raw(raw_fname, preload=True)
raw.info['bads'] = ['MEG 2443'] # 1 bad MEG channel
# Pick a selection of magnetometer channels. A subset of all channels was used
# to speed up the example. For a solution based on all MEG channels use
# meg=True, selection=None and add grad=4000e-13 to the reject dictionary.
# We could do this with a "picks" argument to Epochs and the LCMV functions,
# but here we use raw.pick_types() to save memory.
left_temporal_channels = mne.read_selection('Left-temporal')
raw.pick_types(meg='mag', eeg=False, eog=False, stim=False, exclude='bads',
selection=left_temporal_channels, copy=False)
reject = dict(mag=4e-12)
# Setting time limits for reading epochs. Note that tmin and tmax are set so
# that time-frequency beamforming will be performed for a wider range of time
# points than will later be displayed on the final spectrogram. This ensures
# that all time bins displayed represent an average of an equal number of time
# windows.
tmin, tmax = -0.55, 0.75 # s
tmin_plot, tmax_plot = -0.3, 0.5 # s
# Read epochs. Note that preload is set to False to enable tf_lcmv to read the
# underlying raw object.
# Filtering is then performed on raw data in tf_lcmv and the epochs
# parameters passed here are used to create epochs from filtered data. However,
# reading epochs without preloading means that bad epoch rejection is delayed
示例9: test_proj
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import pick_types [as 别名]
def test_proj():
"""Test SSP proj operations
"""
tempdir = _TempDir()
for proj in [True, False]:
raw = Raw(fif_fname, preload=False, proj=proj)
assert_true(all(p['active'] == proj for p in raw.info['projs']))
data, times = raw[0:2, :]
data1, times1 = raw[0:2]
assert_array_equal(data, data1)
assert_array_equal(times, times1)
# test adding / deleting proj
if proj:
assert_raises(ValueError, raw.add_proj, [],
{'remove_existing': True})
assert_raises(ValueError, raw.del_proj, 0)
else:
projs = deepcopy(raw.info['projs'])
n_proj = len(raw.info['projs'])
raw.del_proj(0)
assert_equal(len(raw.info['projs']), n_proj - 1)
raw.add_proj(projs, remove_existing=False)
# Test that already existing projections are not added.
assert_equal(len(raw.info['projs']), n_proj)
raw.add_proj(projs[:-1], remove_existing=True)
assert_equal(len(raw.info['projs']), n_proj - 1)
# test apply_proj() with and without preload
for preload in [True, False]:
raw = Raw(fif_fname, preload=preload, proj=False)
data, times = raw[:, 0:2]
raw.apply_proj()
data_proj_1 = np.dot(raw._projector, data)
# load the file again without proj
raw = Raw(fif_fname, preload=preload, proj=False)
# write the file with proj. activated, make sure proj has been applied
raw.save(op.join(tempdir, 'raw.fif'), proj=True, overwrite=True)
raw2 = Raw(op.join(tempdir, 'raw.fif'), proj=False)
data_proj_2, _ = raw2[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_true(all(p['active'] for p in raw2.info['projs']))
# read orig file with proj. active
raw2 = Raw(fif_fname, preload=preload, proj=True)
data_proj_2, _ = raw2[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_true(all(p['active'] for p in raw2.info['projs']))
# test that apply_proj works
raw.apply_proj()
data_proj_2, _ = raw[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_allclose(data_proj_2, np.dot(raw._projector, data_proj_2))
tempdir = _TempDir()
out_fname = op.join(tempdir, 'test_raw.fif')
raw = read_raw_fif(test_fif_fname, preload=True).crop(0, 0.002, copy=False)
raw.pick_types(meg=False, eeg=True)
raw.info['projs'] = [raw.info['projs'][-1]]
raw._data.fill(0)
raw._data[-1] = 1.
raw.save(out_fname)
raw = read_raw_fif(out_fname, proj=True, preload=False)
assert_allclose(raw[:, :][0][:1], raw[0, :][0])
示例10: BSD
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import pick_types [as 别名]
#
# License: BSD (3-clause)
import mne
from mne.io import Raw
from mne.preprocessing import ICA, create_ecg_epochs
from mne.datasets import sample
print(__doc__)
###############################################################################
# Fit ICA model using the FastICA algorithm, detect and inspect components
data_path = sample.data_path()
raw_fname = data_path + "/MEG/sample/sample_audvis_filt-0-40_raw.fif"
raw = Raw(raw_fname, preload=True)
raw.filter(1, 30, method="iir")
raw.pick_types(meg=True, eeg=False, exclude="bads", stim=True)
# longer + more epochs for more artifact exposure
events = mne.find_events(raw, stim_channel="STI 014")
epochs = mne.Epochs(raw, events, event_id=None, tmin=-0.2, tmax=0.5)
ica = ICA(n_components=0.95, method="fastica").fit(epochs)
ecg_epochs = create_ecg_epochs(raw, tmin=-0.5, tmax=0.5)
ecg_inds, scores = ica.find_bads_ecg(ecg_epochs)
ica.plot_components(ecg_inds)