本文整理汇总了Python中mne.io.Raw.close方法的典型用法代码示例。如果您正苦于以下问题:Python Raw.close方法的具体用法?Python Raw.close怎么用?Python Raw.close使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mne.io.Raw
的用法示例。
在下文中一共展示了Raw.close方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_ica_additional
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import close [as 别名]
def test_ica_additional():
"""Test additional ICA functionality"""
tempdir = _TempDir()
stop2 = 500
raw = Raw(raw_fname).crop(1.5, stop, False)
raw.load_data()
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
test_cov = read_cov(test_cov_name)
events = read_events(event_name)
picks = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=False, exclude='bads')
epochs = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks,
baseline=(None, 0), preload=True)
# test if n_components=None works
with warnings.catch_warnings(record=True):
ica = ICA(n_components=None,
max_pca_components=None,
n_pca_components=None, random_state=0)
ica.fit(epochs, picks=picks, decim=3)
# for testing eog functionality
picks2 = pick_types(raw.info, meg=True, stim=False, ecg=False,
eog=True, exclude='bads')
epochs_eog = Epochs(raw, events[:4], event_id, tmin, tmax, picks=picks2,
baseline=(None, 0), preload=True)
test_cov2 = test_cov.copy()
ica = ICA(noise_cov=test_cov2, n_components=3, max_pca_components=4,
n_pca_components=4)
assert_true(ica.info is None)
with warnings.catch_warnings(record=True):
ica.fit(raw, picks[:5])
assert_true(isinstance(ica.info, Info))
assert_true(ica.n_components_ < 5)
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4)
assert_raises(RuntimeError, ica.save, '')
with warnings.catch_warnings(record=True):
ica.fit(raw, picks=[1, 2, 3, 4, 5], start=start, stop=stop2)
# test corrmap
ica2 = ica.copy()
corrmap([ica, ica2], (0, 0), threshold='auto', label='blinks', plot=True,
ch_type="mag")
corrmap([ica, ica2], (0, 0), threshold=2, plot=False, show=False)
assert_true(ica.labels_["blinks"] == ica2.labels_["blinks"])
assert_true(0 in ica.labels_["blinks"])
plt.close('all')
# test warnings on bad filenames
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
ica_badname = op.join(op.dirname(tempdir), 'test-bad-name.fif.gz')
ica.save(ica_badname)
read_ica(ica_badname)
assert_naming(w, 'test_ica.py', 2)
# test decim
ica = ICA(n_components=3, max_pca_components=4,
n_pca_components=4)
raw_ = raw.copy()
for _ in range(3):
raw_.append(raw_)
n_samples = raw_._data.shape[1]
with warnings.catch_warnings(record=True):
ica.fit(raw, picks=None, decim=3)
assert_true(raw_._data.shape[1], n_samples)
# test expl var
ica = ICA(n_components=1.0, max_pca_components=4,
n_pca_components=4)
with warnings.catch_warnings(record=True):
ica.fit(raw, picks=None, decim=3)
assert_true(ica.n_components_ == 4)
# epochs extraction from raw fit
assert_raises(RuntimeError, ica.get_sources, epochs)
# test reading and writing
test_ica_fname = op.join(op.dirname(tempdir), 'test-ica.fif')
for cov in (None, test_cov):
ica = ICA(noise_cov=cov, n_components=2, max_pca_components=4,
n_pca_components=4)
with warnings.catch_warnings(record=True): # ICA does not converge
ica.fit(raw, picks=picks, start=start, stop=stop2)
sources = ica.get_sources(epochs).get_data()
assert_true(ica.mixing_matrix_.shape == (2, 2))
assert_true(ica.unmixing_matrix_.shape == (2, 2))
assert_true(ica.pca_components_.shape == (4, len(picks)))
assert_true(sources.shape[1] == ica.n_components_)
for exclude in [[], [0]]:
ica.exclude = [0]
ica.labels_ = {'foo': [0]}
ica.save(test_ica_fname)
ica_read = read_ica(test_ica_fname)
assert_true(ica.exclude == ica_read.exclude)
assert_equal(ica.labels_, ica_read.labels_)
ica.exclude = []
ica.apply(raw, exclude=[1])
#.........这里部分代码省略.........
示例2: build_maxfilter_cmd
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import close [as 别名]
def build_maxfilter_cmd(self, in_fname, out_fname, origin='0 0 40',
frame='head', bad=None, autobad='off', skip=None,
force=False, st=False, st_buflen=16.0,
st_corr=0.96, trans=None, movecomp=False,
headpos=False, hp=None, hpistep=None,
hpisubt=None, hpicons=True, linefreq=None,
cal=None, ctc=None, mx_args='',
maxfilter_bin='/neuro/bin/util/maxfilter',
logfile=None):
"""Build a NeuroMag MaxFilter command for later execution.
See the Maxfilter manual for details on the different options!
Things to implement
* check that cal-file matches date in infile!
* check that maxfilter binary is OK
Parameters
----------
in_fname : str
Input file name
out_fname : str
Output file name
maxfilter_bin : str
Full path to the maxfilter-executable
logfile : str
Full path to the output logfile
force : bool
Overwrite existing output (default: False)
origin : array-like or str
Head origin in mm. If None it will be estimated from headshape
points.
frame : str ('device' or 'head')
Coordinate frame for head center
bad : str, list (or None)
List of static bad channels. Can be a list with channel names, or a
string with channels (with or without the preceding 'MEG')
autobad : string ('on', 'off', 'n')
Sets automated bad channel detection on or off
skip : string or a list of float-tuples (or None)
Skips raw data sequences, time intervals pairs in sec,
e.g.: 0 30 120 150
force : bool
Ignore program warnings
st : bool
Apply the time-domain SSS extension (tSSS)
st_buflen : float
tSSS buffer length in sec (disabled if st is False)
st_corr : float
tSSS subspace correlation limit (disabled if st is False)
movecomp : bool (or 'inter')
Estimates and compensates head movements in continuous raw data.
trans : str(filename or 'default') (or None)
Transforms the data into the coil definitions of in_fname,
or into the default frame. If None, and movecomp is True,
data will be movement compensated to initial head position.
headpos : bool
Estimates and stores head position parameters, but does not
compensate movements
hp : string (or None)
Stores head position data in an ascii file
hpistep : float (or None)
Sets head position update interval in ms
hpisubt : str('amp', 'base', 'off') (or None)
Subtracts hpi signals: sine amplitudes, amp + baseline, or switch
off
hpicons : bool
Check initial consistency isotrak vs hpifit
linefreq : int (50, 60) (or None)
Sets the basic line interference frequency (50 or 60 Hz)
(None: do not use line filter)
cal : str
Path to calibration file
ctc : str
Path to Cross-talk compensation file
mx_args : str
Additional command line arguments to pass to MaxFilter
"""
# determine the head origin if necessary
if origin is None:
self.logger.info('Estimating head origin from headshape points..')
raw = Raw(in_fname, preload=False)
with warnings.filterwarnings('error', category=RuntimeWarning):
r, o_head, o_dev = fit_sphere_to_headshape(raw.info,
dig_kind='auto',
units='m')
raw.close()
self.logger.info('Fitted sphere: r = {.1f} mm'.format(r))
self.logger.info('Origin head coordinates: {.1f} {.1f} {.1f} mm'.
format(o_head[0], o_head[1], o_head[2]))
self.logger.info('Origin device coordinates: {.1f} {.1f} {.1f} mm'.
format(o_dev[0], o_dev[1], o_dev[2]))
self.logger.info('[done]')
if frame == 'head':
origin = o_head
elif frame == 'device':
origin = o_dev
#.........这里部分代码省略.........
示例3: build_maxfilter_cmd
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import close [as 别名]
#.........这里部分代码省略.........
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
origin: string
Head origin in selected coordinate frame
"""
if verbose:
log_level=logging.INFO
else:
log_level=logging.ERROR
logger.setLevel(log_level)
# check for possible maxfilter bugs
if mv_trans is not None and movecomp:
_mxwarn("Don't use '-trans' with head-movement compensation "
"'-movecomp'")
# if autobad != 'off' and (mv_headpos or mv_comp):
# _mxwarn("Don't use '-autobad' with head-position estimation "
# "'-headpos' or movement compensation '-movecomp'")
# if st and autobad != 'off':
# _mxwarn("Don't use '-autobad' with '-st' option")
# determine the head origin if necessary
if origin is None:
logger.info('Estimating head origin from headshape points..')
raw = Raw(in_fname)
r, o_head, o_dev = fit_sphere_to_headshape(raw.info, ylim=0.070) # Note: this is not standard MNE...
raw.close()
logger.info('[done]')
if frame == 'head':
origin = o_head
elif frame == 'device':
origin = o_dev
else:
RuntimeError('invalid frame for origin')
# format command
if origin is False:
cmd = (maxfilter_bin + ' -f %s -o %s -v '
% (in_fname, out_fname))
else:
if not isinstance(origin, basestring):
origin = '%0.1f %0.1f %0.1f' % (origin[0], origin[1], origin[2])
cmd = (maxfilter_bin + ' -f %s -o %s -frame %s -origin %s -v '
% (in_fname, out_fname, frame, origin))
if bad is not None:
# format the channels
if not isinstance(bad, list):
bad = bad.split()
bad = map(str, bad)
bad_logic = [ch[3:] if ch.startswith('MEG') else ch for ch in bad]
bad_str = ' '.join(bad_logic)
cmd += '-bad %s ' % bad_str
cmd += '-autobad %s ' % autobad
if skip is not None:
示例4: len
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import close [as 别名]
mfp["input_file"] = raw_fname
if len(session_input_files) > 1:
output_name_base = output_folder + "/" + session + "-" + fnum_raw
else:
output_name_base = output_folder + "/" + session
if not "empt" in session.lower(): #### TYPO IN ONE SESSION NAME: emptRy!!
# change this to test existence of initial HPI measurement...
mfp["output_file"] = output_name_base + mf_fname_suffix + ".fif"
mfp["mv_hp"] = output_name_base + mf_fname_suffix + ".pos"
mfp["logfile"] = output_name_base + mf_fname_suffix + ".log"
if radius_head is None: # only needed once per study (same HPI digs)
raw = Raw(raw_fname)
radius_head, origin_head, origin_devive = fit_sphere_to_headshape(raw.info, verbose=VERBOSE)
raw.close()
mfp["origin_head"] = origin_head
mfp["radius_head"] = radius_head
else:
mfp["output_file"] = output_name_base + mf_fname_suffix + ".fif"
mfp["mv_hp"] = None
mfp["logfile"] = output_name_base + mf_fname_suffix + ".log"
mfp["movecomp"] = False
mfp["hpicons"] = False
mfp["origin_head"] = False # Must be False, if None, will try to estimate it!
mfp["radius_head"] = False
# Since both session_input and session_output_files are lists, they
# will now remain ordered 1-to-1
session_output_files.append(mfp["output_file"])