本文整理汇总了Python中mne.io.Raw.notch_filter方法的典型用法代码示例。如果您正苦于以下问题:Python Raw.notch_filter方法的具体用法?Python Raw.notch_filter怎么用?Python Raw.notch_filter使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mne.io.Raw
的用法示例。
在下文中一共展示了Raw.notch_filter方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: filter_data
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import notch_filter [as 别名]
def filter_data(subject, l_freq=l_freq, h_freq=h_freq, n_freq=n_freq,
save=True, n_jobs=1):
"""Filter the data.
params:
subject : str
the subject id to be loaded
l_freq : int
the low frequency to filter
h_freq : int
the high frequency to filter
n_freq : int
the notch filter frequency
save : bool
save the filtered data
n_jobs : int
The number of CPUs to use in parallel.
"""
raw = Raw(maxfiltered_folder + "%s_data_mc_raw_tsss.fif" % subject,
preload=True)
if n_freq is not None:
raw.notch_filter(n_freq, n_jobs=n_jobs)
raw.filter(l_freq, h_freq, n_jobs=n_jobs)
if save is True:
raw.save(save_folder + "%s_filtered_data_mc_raw_tsss.fif" % subject,
overwrite=True)
示例2: dict
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import notch_filter [as 别名]
reject = dict(mag=4e-12, eog=250e-6)
data_path = bst_raw.data_path()
raw_fname = data_path + '/MEG/bst_raw/' + \
'subj001_somatosensory_20111109_01_AUX-f_raw.fif'
raw = Raw(raw_fname, preload=True, add_eeg_ref=False)
raw.plot()
# set EOG channel
raw.set_channel_types({'EEG058': 'eog'})
raw.add_eeg_average_proj()
# show power line interference and remove it
raw.plot_psd()
raw.notch_filter(np.arange(60, 181, 60))
events = mne.find_events(raw, stim_channel='UPPT001')
# pick MEG channels
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True,
exclude='bads')
# Compute epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), reject=reject, preload=False)
# compute evoked
evoked = epochs.average()
# remove physiological artifacts (eyeblinks, heartbeats) using SSP on baseline
示例3: test_filter
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import notch_filter [as 别名]
def test_filter():
"""Test filtering (FIR and IIR) and Raw.apply_function interface
"""
raw = Raw(fif_fname).crop(0, 7, False)
raw.load_data()
sig_dec = 11
sig_dec_notch = 12
sig_dec_notch_fit = 12
picks_meg = pick_types(raw.info, meg=True, exclude='bads')
picks = picks_meg[:4]
filter_params = dict(picks=picks, n_jobs=2, copy=True)
raw_lp = raw.filter(0., 4.0 - 0.25, **filter_params)
raw_hp = raw.filter(8.0 + 0.25, None, **filter_params)
raw_bp = raw.filter(4.0 + 0.25, 8.0 - 0.25, **filter_params)
raw_bs = raw.filter(8.0 + 0.25, 4.0 - 0.25, **filter_params)
data, _ = raw[picks, :]
lp_data, _ = raw_lp[picks, :]
hp_data, _ = raw_hp[picks, :]
bp_data, _ = raw_bp[picks, :]
bs_data, _ = raw_bs[picks, :]
assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
assert_array_almost_equal(data, bp_data + bs_data, sig_dec)
filter_params_iir = dict(picks=picks, n_jobs=2, copy=True, method='iir')
raw_lp_iir = raw.filter(0., 4.0, **filter_params_iir)
raw_hp_iir = raw.filter(8.0, None, **filter_params_iir)
raw_bp_iir = raw.filter(4.0, 8.0, **filter_params_iir)
lp_data_iir, _ = raw_lp_iir[picks, :]
hp_data_iir, _ = raw_hp_iir[picks, :]
bp_data_iir, _ = raw_bp_iir[picks, :]
summation = lp_data_iir + hp_data_iir + bp_data_iir
assert_array_almost_equal(data[:, 100:-100], summation[:, 100:-100],
sig_dec)
# make sure we didn't touch other channels
data, _ = raw[picks_meg[4:], :]
bp_data, _ = raw_bp[picks_meg[4:], :]
assert_array_equal(data, bp_data)
bp_data_iir, _ = raw_bp_iir[picks_meg[4:], :]
assert_array_equal(data, bp_data_iir)
# ... and that inplace changes are inplace
raw_copy = raw.copy()
raw_copy.filter(None, 20., picks=picks, n_jobs=2, copy=False)
assert_true(raw._data[0, 0] != raw_copy._data[0, 0])
assert_equal(raw.filter(None, 20., **filter_params)._data,
raw_copy._data)
# do a very simple check on line filtering
with warnings.catch_warnings(record=True):
warnings.simplefilter('always')
raw_bs = raw.filter(60.0 + 0.5, 60.0 - 0.5, **filter_params)
data_bs, _ = raw_bs[picks, :]
raw_notch = raw.notch_filter(60.0, picks=picks, n_jobs=2,
method='fft', copy=True)
data_notch, _ = raw_notch[picks, :]
assert_array_almost_equal(data_bs, data_notch, sig_dec_notch)
# now use the sinusoidal fitting
raw_notch = raw.notch_filter(None, picks=picks, n_jobs=2,
method='spectrum_fit', copy=True)
data_notch, _ = raw_notch[picks, :]
data, _ = raw[picks, :]
assert_array_almost_equal(data, data_notch, sig_dec_notch_fit)
示例4: dict
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import notch_filter [as 别名]
raw_fnormal = scratch_path + "tone_task-tsss-mc-autobad.fif"
raw_fhyp = scratch_path + "hyp_tone_task-tsss-mc-autobad.fif"
reject = dict(
grad=4000e-13, # T / m (gradiometers)
mag=4e-12, # T (magnetometers)
# eog=250e-6 # uV (EOG channels)
)
conditions = ["normal", "hyp"]
for condition in conditions:
if condition == "normal":
raw = Raw(raw_fnormal, preload=True)
raw.filter(1, 90, n_jobs=3)
raw.notch_filter(50, n_jobs=3)
elif condition == "hyp":
raw = Raw(raw_fhyp, preload=True)
raw.filter(1, 90, n_jobs=3)
raw.notch_filter(50, n_jobs=3)
#
ica = ICA(n_components=0.95, method="fastica")
picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False, stim=False, exclude="bads")
ica.fit(raw, picks=picks, decim=3, reject=reject)
# maximum number of components to reject
n_max_ecg, n_max_eog = 3, 1
示例5: dict
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import notch_filter [as 别名]
reject_params = dict(grad=4000e-13, # T / m (gradiometers)
mag=4e-12 # T (magnetometers)
)
# SETTINGS
#raw = Raw(save_folder + "%s_%s_filtered_mc_tsss-raw.fif" % (subject,
# condition),
# preload=True)
raw = Raw(maxfiltered_folder + "%s_%s_mc_tsss-raw.fif" % (subject,
condition),
preload=True)
raw.drop_channels(raw.info["bads"])
raw.notch_filter(n_freq, n_jobs=n_jobs)
raw.filter(l_freq, h_freq, n_jobs=n_jobs)
raw.save(save_folder + "%s_%s_filtered_mc_tsss-raw.fif" % (subject,
condition),
overwrite=True)
# ICA Part
ica = ICA(n_components=0.99, method='fastica', max_iter=256)
picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False, emg=False,
bio=False, stim=False, exclude='bads')
ica.fit(raw, picks=picks, decim=decim, reject=reject_params)