本文整理汇总了Python中mne.io.Raw.apply_proj方法的典型用法代码示例。如果您正苦于以下问题:Python Raw.apply_proj方法的具体用法?Python Raw.apply_proj怎么用?Python Raw.apply_proj使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mne.io.Raw
的用法示例。
在下文中一共展示了Raw.apply_proj方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_rank_estimation
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import apply_proj [as 别名]
def test_rank_estimation():
"""Test raw rank estimation
"""
iter_tests = itt.product([fif_fname, hp_fif_fname], ["norm", dict(mag=1e11, grad=1e9, eeg=1e5)]) # sss
for fname, scalings in iter_tests:
raw = Raw(fname)
(_, picks_meg), (_, picks_eeg) = _picks_by_type(raw.info, meg_combined=True)
n_meg = len(picks_meg)
n_eeg = len(picks_eeg)
raw = Raw(fname, preload=True)
if "proc_history" not in raw.info:
expected_rank = n_meg + n_eeg
else:
mf = raw.info["proc_history"][0]["max_info"]
expected_rank = _get_sss_rank(mf) + n_eeg
assert_array_equal(raw.estimate_rank(scalings=scalings), expected_rank)
assert_array_equal(raw.estimate_rank(picks=picks_eeg, scalings=scalings), n_eeg)
raw = Raw(fname, preload=False)
if "sss" in fname:
tstart, tstop = 0.0, 30.0
raw.add_proj(compute_proj_raw(raw))
raw.apply_proj()
else:
tstart, tstop = 10.0, 20.0
raw.apply_proj()
n_proj = len(raw.info["projs"])
assert_array_equal(
raw.estimate_rank(tstart=tstart, tstop=tstop, scalings=scalings),
expected_rank - (1 if "sss" in fname else n_proj),
)
示例2: test_proj
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import apply_proj [as 别名]
def test_proj():
"""Test SSP proj operations
"""
tempdir = _TempDir()
for proj in [True, False]:
raw = Raw(fif_fname, preload=False, proj=proj)
assert_true(all(p['active'] == proj for p in raw.info['projs']))
data, times = raw[0:2, :]
data1, times1 = raw[0:2]
assert_array_equal(data, data1)
assert_array_equal(times, times1)
# test adding / deleting proj
if proj:
assert_raises(ValueError, raw.add_proj, [],
{'remove_existing': True})
assert_raises(ValueError, raw.del_proj, 0)
else:
projs = deepcopy(raw.info['projs'])
n_proj = len(raw.info['projs'])
raw.del_proj(0)
assert_true(len(raw.info['projs']) == n_proj - 1)
raw.add_proj(projs, remove_existing=False)
assert_true(len(raw.info['projs']) == 2 * n_proj - 1)
raw.add_proj(projs, remove_existing=True)
assert_true(len(raw.info['projs']) == n_proj)
# test apply_proj() with and without preload
for preload in [True, False]:
raw = Raw(fif_fname, preload=preload, proj=False)
data, times = raw[:, 0:2]
raw.apply_proj()
data_proj_1 = np.dot(raw._projector, data)
# load the file again without proj
raw = Raw(fif_fname, preload=preload, proj=False)
# write the file with proj. activated, make sure proj has been applied
raw.save(op.join(tempdir, 'raw.fif'), proj=True, overwrite=True)
raw2 = Raw(op.join(tempdir, 'raw.fif'), proj=False)
data_proj_2, _ = raw2[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_true(all(p['active'] for p in raw2.info['projs']))
# read orig file with proj. active
raw2 = Raw(fif_fname, preload=preload, proj=True)
data_proj_2, _ = raw2[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_true(all(p['active'] for p in raw2.info['projs']))
# test that apply_proj works
raw.apply_proj()
data_proj_2, _ = raw[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_allclose(data_proj_2, np.dot(raw._projector, data_proj_2))
示例3: test_rank_estimation
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import apply_proj [as 别名]
def test_rank_estimation():
"""Test raw rank estimation
"""
raw = Raw(fif_fname)
n_meg = len(pick_types(raw.info, meg=True, eeg=False, exclude='bads'))
n_eeg = len(pick_types(raw.info, meg=False, eeg=True, exclude='bads'))
raw = Raw(fif_fname, preload=True)
assert_array_equal(raw.estimate_rank(), n_meg + n_eeg)
raw = Raw(fif_fname, preload=False)
raw.apply_proj()
n_proj = len(raw.info['projs'])
assert_array_equal(raw.estimate_rank(tstart=10, tstop=20),
n_meg + n_eeg - n_proj)
示例4: test_proj
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import apply_proj [as 别名]
def test_proj():
"""Test SSP proj operations
"""
tempdir = _TempDir()
for proj in [True, False]:
raw = Raw(fif_fname, preload=False, proj=proj)
assert_true(all(p['active'] == proj for p in raw.info['projs']))
data, times = raw[0:2, :]
data1, times1 = raw[0:2]
assert_array_equal(data, data1)
assert_array_equal(times, times1)
# test adding / deleting proj
if proj:
assert_raises(ValueError, raw.add_proj, [],
{'remove_existing': True})
assert_raises(ValueError, raw.del_proj, 0)
else:
projs = deepcopy(raw.info['projs'])
n_proj = len(raw.info['projs'])
raw.del_proj(0)
assert_equal(len(raw.info['projs']), n_proj - 1)
raw.add_proj(projs, remove_existing=False)
# Test that already existing projections are not added.
assert_equal(len(raw.info['projs']), n_proj)
raw.add_proj(projs[:-1], remove_existing=True)
assert_equal(len(raw.info['projs']), n_proj - 1)
# test apply_proj() with and without preload
for preload in [True, False]:
raw = Raw(fif_fname, preload=preload, proj=False)
data, times = raw[:, 0:2]
raw.apply_proj()
data_proj_1 = np.dot(raw._projector, data)
# load the file again without proj
raw = Raw(fif_fname, preload=preload, proj=False)
# write the file with proj. activated, make sure proj has been applied
raw.save(op.join(tempdir, 'raw.fif'), proj=True, overwrite=True)
raw2 = Raw(op.join(tempdir, 'raw.fif'), proj=False)
data_proj_2, _ = raw2[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_true(all(p['active'] for p in raw2.info['projs']))
# read orig file with proj. active
raw2 = Raw(fif_fname, preload=preload, proj=True)
data_proj_2, _ = raw2[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_true(all(p['active'] for p in raw2.info['projs']))
# test that apply_proj works
raw.apply_proj()
data_proj_2, _ = raw[:, 0:2]
assert_allclose(data_proj_1, data_proj_2)
assert_allclose(data_proj_2, np.dot(raw._projector, data_proj_2))
tempdir = _TempDir()
out_fname = op.join(tempdir, 'test_raw.fif')
raw = read_raw_fif(test_fif_fname, preload=True).crop(0, 0.002, copy=False)
raw.pick_types(meg=False, eeg=True)
raw.info['projs'] = [raw.info['projs'][-1]]
raw._data.fill(0)
raw._data[-1] = 1.
raw.save(out_fname)
raw = read_raw_fif(out_fname, proj=True, preload=False)
assert_allclose(raw[:, :][0][:1], raw[0, :][0])
示例5: Raw
# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import apply_proj [as 别名]
import matplotlib.pyplot as plt
import numpy as np
import mne
from mne.io import Raw
from mne.preprocessing.ica import ICA
from mne.datasets import sample
###############################################################################
# Setup paths and prepare epochs data
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
raw = Raw(raw_fname, preload=True)
raw.apply_proj()
picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True,
ecg=True, stim=False, exclude='bads')
tmin, tmax, event_id = -0.2, 0.5, 1
baseline = (None, 0)
reject = None
events = mne.find_events(raw, stim_channel='STI 014')
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=False, picks=picks,
baseline=baseline, preload=True, reject=reject)
random_state = np.random.RandomState(42)
###############################################################################