当前位置: 首页>>代码示例>>Python>>正文


Python Raw.apply_gradient_compensation方法代码示例

本文整理汇总了Python中mne.io.Raw.apply_gradient_compensation方法的典型用法代码示例。如果您正苦于以下问题:Python Raw.apply_gradient_compensation方法的具体用法?Python Raw.apply_gradient_compensation怎么用?Python Raw.apply_gradient_compensation使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.io.Raw的用法示例。


在下文中一共展示了Raw.apply_gradient_compensation方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: make_evoked

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import apply_gradient_compensation [as 别名]
 def make_evoked(fname, comp):
     raw = Raw(fname)
     if comp is not None:
         raw.apply_gradient_compensation(comp)
     picks = pick_types(raw.info, meg=True, ref_meg=True)
     events = np.array([[0, 0, 1]], dtype=np.int)
     evoked = Epochs(raw, events, 1, 0, 20e-3, picks=picks).average()
     return evoked
开发者ID:JuliaSprenger,项目名称:mne-python,代码行数:10,代码来源:test_compensator.py

示例2: test_compensation

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import apply_gradient_compensation [as 别名]
def test_compensation():
    """Test compensation"""
    tempdir = _TempDir()
    raw = Raw(ctf_comp_fname, compensation=None)
    assert_equal(get_current_comp(raw.info), 3)
    comp1 = make_compensator(raw.info, 3, 1, exclude_comp_chs=False)
    assert_true(comp1.shape == (340, 340))
    comp2 = make_compensator(raw.info, 3, 1, exclude_comp_chs=True)
    assert_true(comp2.shape == (311, 340))

    # round-trip
    desired = np.eye(340)
    for from_ in range(3):
        for to in range(3):
            if from_ == to:
                continue
            comp1 = make_compensator(raw.info, from_, to)
            comp2 = make_compensator(raw.info, to, from_)
            # To get 1e-12 here (instead of 1e-6) we must use the linalg.inv
            # method mentioned in compensator.py
            assert_allclose(np.dot(comp1, comp2), desired, atol=1e-12)
            assert_allclose(np.dot(comp2, comp1), desired, atol=1e-12)

    # make sure that changing the comp doesn't modify the original data
    raw2 = Raw(ctf_comp_fname).apply_gradient_compensation(2)
    assert_equal(get_current_comp(raw2.info), 2)
    fname = op.join(tempdir, 'ctf-raw.fif')
    raw2.save(fname)
    raw2 = Raw(fname)
    assert_equal(raw2.compensation_grade, 2)
    raw2.apply_gradient_compensation(3)
    assert_equal(raw2.compensation_grade, 3)
    data, _ = raw[:, :]
    data2, _ = raw2[:, :]
    # channels have norm ~1e-12
    assert_allclose(data, data2, rtol=1e-9, atol=1e-18)
    for ch1, ch2 in zip(raw.info['chs'], raw2.info['chs']):
        assert_true(ch1['coil_type'] == ch2['coil_type'])
开发者ID:JuliaSprenger,项目名称:mne-python,代码行数:40,代码来源:test_compensator.py

示例3: test_other_systems

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import apply_gradient_compensation [as 别名]
def test_other_systems():
    """Test Maxwell filtering on KIT, BTI, and CTF files"""
    # KIT
    kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    with warnings.catch_warnings(record=True):  # head fit
        assert_raises(RuntimeError, maxwell_filter, raw_kit)
    raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04), ignore_ref=True)
    _assert_n_free(raw_sss, 65, 65)
    raw_sss_auto = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
                                  ignore_ref=True, mag_scale='auto')
    assert_allclose(raw_sss._data, raw_sss_auto._data)
    # XXX this KIT origin fit is terrible! Eventually we should get a
    # corrected HSP file with proper coverage
    with warnings.catch_warnings(record=True):
        with catch_logging() as log_file:
            assert_raises(RuntimeError, maxwell_filter, raw_kit,
                          ignore_ref=True, regularize=None)  # bad condition
            raw_sss = maxwell_filter(raw_kit, origin='auto',
                                     ignore_ref=True, bad_condition='warning',
                                     verbose='warning')
    log_file = log_file.getvalue()
    assert_true('badly conditioned' in log_file)
    assert_true('more than 20 mm from' in log_file)
    # fits can differ slightly based on scipy version, so be lenient here
    _assert_n_free(raw_sss, 28, 34)  # bad origin == brutal reg
    # Let's set the origin
    with warnings.catch_warnings(record=True):
        with catch_logging() as log_file:
            raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
                                     ignore_ref=True, bad_condition='warning',
                                     regularize=None, verbose='warning')
    log_file = log_file.getvalue()
    assert_true('badly conditioned' in log_file)
    _assert_n_free(raw_sss, 80)
    # Now with reg
    with warnings.catch_warnings(record=True):
        with catch_logging() as log_file:
            raw_sss = maxwell_filter(raw_kit, origin=(0., 0., 0.04),
                                     ignore_ref=True, verbose=True)
    log_file = log_file.getvalue()
    assert_true('badly conditioned' not in log_file)
    _assert_n_free(raw_sss, 65)

    # BTi
    bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    with warnings.catch_warnings(record=True):  # weght table
        raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
    picks = pick_types(raw_bti.info, meg='mag', exclude=())
    power = np.sqrt(np.sum(raw_bti[picks][0] ** 2))
    raw_sss = maxwell_filter(raw_bti)
    _assert_n_free(raw_sss, 70)
    _assert_shielding(raw_sss, power, 0.5)
    raw_sss_auto = maxwell_filter(raw_bti, mag_scale='auto', verbose=True)
    _assert_shielding(raw_sss_auto, power, 0.7)

    # CTF
    raw_ctf = Raw(fname_ctf_raw)
    assert_equal(raw_ctf.compensation_grade, 3)
    assert_raises(RuntimeError, maxwell_filter, raw_ctf)  # compensated
    raw_ctf.apply_gradient_compensation(0)
    assert_raises(ValueError, maxwell_filter, raw_ctf)  # cannot fit headshape
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04))
    _assert_n_free(raw_sss, 68)
    _assert_shielding(raw_sss, raw_ctf, 1.8)
    raw_sss = maxwell_filter(raw_ctf, origin=(0., 0., 0.04), ignore_ref=True)
    _assert_n_free(raw_sss, 70)
    _assert_shielding(raw_sss, raw_ctf, 12)
    raw_sss_auto = maxwell_filter(raw_ctf, origin=(0., 0., 0.04),
                                  ignore_ref=True, mag_scale='auto')
    assert_allclose(raw_sss._data, raw_sss_auto._data)
开发者ID:JuliaSprenger,项目名称:mne-python,代码行数:80,代码来源:test_maxwell.py


注:本文中的mne.io.Raw.apply_gradient_compensation方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。