当前位置: 首页>>代码示例>>Python>>正文


Python Raw.filter方法代码示例

本文整理汇总了Python中mne.io.Raw.filter方法的典型用法代码示例。如果您正苦于以下问题:Python Raw.filter方法的具体用法?Python Raw.filter怎么用?Python Raw.filter使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mne.io.Raw的用法示例。


在下文中一共展示了Raw.filter方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: filter_data

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
def filter_data(subject, l_freq=l_freq, h_freq=h_freq, n_freq=n_freq,
                save=True, n_jobs=1):
    """Filter the data.

    params:
    subject : str
        the subject id to be loaded
    l_freq :  int
        the low frequency to filter
    h_freq : int
        the high frequency to filter
    n_freq : int
        the notch filter frequency
    save : bool
        save the filtered data
    n_jobs : int
        The number of CPUs to use in parallel.
    """
    raw = Raw(maxfiltered_folder + "%s_data_mc_raw_tsss.fif" % subject,
              preload=True)

    if n_freq is not None:
        raw.notch_filter(n_freq, n_jobs=n_jobs)

    raw.filter(l_freq, h_freq, n_jobs=n_jobs)

    if save is True:
        raw.save(save_folder + "%s_filtered_data_mc_raw_tsss.fif" % subject,
                 overwrite=True)
开发者ID:MadsJensen,项目名称:malthe_alpha_project,代码行数:31,代码来源:filter_ICA.py

示例2: test_memmap

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
def test_memmap():
    fname='ec_rest_before_tsss_mc_rsl.fif'
    raw = Raw(fname, preload=False)
    raw.preload_data() #  data becomes numpy.float64
    data_shape = raw._data.shape

    tmpdir = mkdtemp(dir='/Users/cjb/tmp')
    mmap_fname = opj(tmpdir, 'raw_data.dat')

    fp = np.memmap(mmap_fname, dtype='float64', mode='w+',
                   shape=data_shape)

    print('Contents of raw._data:')
    print(raw._data[0][:10])
    print('Contents of memmap:')
    print(fp[0][:10])

    fp[:] = raw._data[:]
    print('Contents of memmap after assignment:')
    print(fp[0][:10])

    # delete numpy array and the memmap writer
    del raw._data
    del fp

    raw._data = np.memmap(mmap_fname, dtype='float64', mode='r+',
                          shape=data_shape)
    print('Contents of raw._data after loading from memmap:')
    print(raw._data[0][:10])


    raw.filter(None,40)
    print('Contents of raw._data after filtering:')
    print(raw._data[0][:10])
开发者ID:cjayb,项目名称:memory_profiling,代码行数:36,代码来源:np_memmap_raw.py

示例3: filter_raw

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
def filter_raw():
    fname='ec_rest_before_tsss_mc_rsl.fif'

    raw = Raw(fname, preload=False)
    raw.preload_data() #  data becomes numpy.float64
    raw.filter(None, 40, n_jobs=4)
    del raw

    fname='ec_rest_after_tsss_mc_rsl.fif'
    raw2 = Raw(fname, preload=False)
    raw2.preload_data() #  data becomes numpy.float64
    raw2.filter(None, 40, n_jobs=4)
    del raw2
开发者ID:cjayb,项目名称:memory_profiling,代码行数:15,代码来源:memprof_raw_filter.py

示例4: generate_data_for_comparing_against_eeglab_infomax

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
def generate_data_for_comparing_against_eeglab_infomax(ch_type, random_state):

    data_dir = op.join(testing.data_path(download=False), 'MEG', 'sample')
    raw_fname = op.join(data_dir, 'sample_audvis_trunc_raw.fif')

    raw = Raw(raw_fname, preload=True)

    if ch_type == 'eeg':
        picks = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
    else:
        picks = pick_types(raw.info, meg=ch_type,
                           eeg=False, exclude='bads')

    # select a small number of channels for the test
    number_of_channels_to_use = 5
    idx_perm = random_permutation(picks.shape[0], random_state)
    picks = picks[idx_perm[:number_of_channels_to_use]]

    with warnings.catch_warnings(record=True):  # deprecated params
        raw.filter(1, 45, picks=picks)
    # Eventually we will need to add these, but for now having none of
    # them is a nice deprecation sanity check.
    #           filter_length='10s',
    #           l_trans_bandwidth=0.5, h_trans_bandwidth=0.5,
    #           phase='zero-double', fir_window='hann')  # use the old way
    X = raw[picks, :][0][:, ::20]

    # Subtract the mean
    mean_X = X.mean(axis=1)
    X -= mean_X[:, None]

    # pre_whitening: z-score
    X /= np.std(X)

    T = X.shape[1]
    cov_X = np.dot(X, X.T) / T

    # Let's whiten the data
    U, D, _ = svd(cov_X)
    W = np.dot(U, U.T / np.sqrt(D)[:, None])
    Y = np.dot(W, X)

    return Y
开发者ID:JuliaSprenger,项目名称:mne-python,代码行数:45,代码来源:test_eeglab_infomax.py

示例5: test_preload_memmap

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
def test_preload_memmap():
    tmpdir = mkdtemp(dir="/Users/cjb/tmp")
    mmap_fname = opj(tmpdir, "raw_data.dat")

    # fname='ec_rest_before_tsss_mc_rsl.fif'
    data_path = sample.data_path(download=False)
    fname = data_path + "/MEG/sample/sample_audvis_raw.fif"

    raw = Raw(fname, preload=False)
    # """This function actually preloads the data"""
    # data_buffer = mmap_fname
    # raw._data = raw._read_segment(data_buffer=data_buffer)[0]
    # assert len(raw._data) == raw.info['nchan']
    # raw.preload = True
    # raw.close()
    raw.preload_data(data_buffer=mmap_fname)
    data_shape = raw._data.shape

    print("Contents of raw._data after reading from fif:")
    print(type(raw._data))
    print(raw._data[100][:5])

    del raw._data
    raw._data = np.memmap(mmap_fname, dtype="float64", mode="c", shape=data_shape)

    print("Contents of raw._data after RE-loading:")
    print(type(raw._data))
    print(raw._data[100][:5])

    raw.filter(None, 40)
    print("Contents of raw._data after filtering:")
    print(type(raw._data))
    print(raw._data[100][:5])

    # PROBLEM: Now the filtered data are IN MEMORY, but as a memmap
    # What if I'd like to continue from here using it as an ndarray?

    del raw._data

    rmtree(tmpdir, ignore_errors=True)
开发者ID:cjayb,项目名称:memory_profiling,代码行数:42,代码来源:mne_preload_raw.py

示例6: generate_data_for_comparing_against_eeglab_infomax

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
def generate_data_for_comparing_against_eeglab_infomax(ch_type, random_state):

    data_dir = op.join(testing.data_path(download=False), 'MEG', 'sample')
    raw_fname = op.join(data_dir, 'sample_audvis_trunc_raw.fif')

    raw = Raw(raw_fname, preload=True)

    if ch_type == 'eeg':
        picks = pick_types(raw.info, meg=False, eeg=True, exclude='bads')
    else:
        picks = pick_types(raw.info, meg=ch_type,
                           eeg=False, exclude='bads')

    # select a small number of channels for the test
    number_of_channels_to_use = 5
    idx_perm = random_permutation(picks.shape[0], random_state)
    picks = picks[idx_perm[:number_of_channels_to_use]]

    raw.filter(1, 45, n_jobs=2)
    X = raw[picks, :][0][:, ::20]

    # Substract the mean
    mean_X = X.mean(axis=1)
    X -= mean_X[:, None]

    # pre_whitening: z-score
    X /= np.std(X)

    T = X.shape[1]
    cov_X = np.dot(X, X.T) / T

    # Let's whiten the data
    U, D, _ = svd(cov_X)
    W = np.dot(U, U.T / np.sqrt(D)[:, None])
    Y = np.dot(W, X)

    return Y
开发者ID:trachelr,项目名称:mne-python,代码行数:39,代码来源:test_eeglab_infomax.py

示例7: preprocess_set_ICA_comp_fif_to_ts

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
def preprocess_set_ICA_comp_fif_to_ts(fif_file, n_comp_exclude, l_freq, h_freq,
                                      down_sfreq, is_sensor_space):
    import os
    import numpy as np
    import sys

    import mne
    from mne.io import Raw
    from mne.preprocessing import read_ica
    from mne.report import Report

    from nipype.utils.filemanip import split_filename as split_f

    report = Report()

    subj_path, basename, ext = split_f(fif_file)
    (data_path,  sbj_name) = os.path.split(subj_path)

    print '*** SBJ %s' % sbj_name + '***'

#    n_session = int(filter(str.isdigit, basename))
#    print '*** n session = %d' % n_session + '***'

    # Read raw
    raw = Raw(fif_file, preload=True)

    # select sensors
    select_sensors = mne.pick_types(raw.info, meg=True, ref_meg=False,
                                    exclude='bads')
    picks_meeg = mne.pick_types(raw.info, meg=True, eeg=True,
                                exclude='bads')

    # save electrode locations
    sens_loc = [raw.info['chs'][i]['loc'][:3] for i in select_sensors]
    sens_loc = np.array(sens_loc)

    channel_coords_file = os.path.abspath("correct_channel_coords.txt")
    np.savetxt(channel_coords_file, sens_loc, fmt='%s')

    # save electrode names
    sens_names = np.array([raw.ch_names[pos] for pos in select_sensors],
                          dtype="str")

    channel_names_file = os.path.abspath("correct_channel_names.txt")
    np.savetxt(channel_names_file, sens_names, fmt='%s')

    # filtering + downsampling
    # TODO n_jobs=8
    raw.filter(l_freq=l_freq, h_freq=h_freq, picks=picks_meeg,
               method='iir',n_jobs=8)
#    raw.resample(sfreq=down_sfreq, npad=0)

    # load ICA
    is_show = False  # visualization
    ica_filename = os.path.join(subj_path, basename + '-ica.fif')
    if os.path.exists(ica_filename) is False:
        print "$$$ Warning, no %s found" % ica_filename
        sys.exit()
    else:
        ica = read_ica(ica_filename)

    # AP 210316
    '''
    print '*** ica.exclude before set components= ', ica.exclude
    if n_comp_exclude.has_key(sbj_name):
        print '*** ICA to be excluded for sbj %s ' % sbj_name + ' ' + str(n_comp_exclude[sbj_name]) + '***'
        matrix_c_ICA = n_comp_exclude[sbj_name]

        if not matrix_c_ICA[n_session-1]:
            print 'no ICA'
        else:
            print '*** ICA to be excluded for session %d ' %n_session + ' ' + str(matrix_c_ICA[n_session-1]) + '***'        
    ica.exclude = matrix_c_ICA[n_session-1]
    '''
    # AP new dict
    print '*** ica.exclude before set components= ', ica.exclude
    if n_comp_exclude.has_key(sbj_name):
        print '*** ICA to be excluded for sbj %s ' % sbj_name + ' ' + str(n_comp_exclude[sbj_name]) + '***'
        session_dict = n_comp_exclude[sbj_name]
        session_names = session_dict.keys()

        componentes = []
        for s in session_names:
            if basename.find(s) > -1:
                componentes = session_dict[s]
                break

        if len(componentes) == 0:
            print '\n no ICA to be excluded \n'
        else:
            print '\n *** ICA to be excluded for session %s ' % s + \
                    ' ' + str(componentes) + ' *** \n'

    ica.exclude = componentes

    print '\n *** ica.exclude after set components = ', ica.exclude

    fig1 = ica.plot_overlay(raw, show=is_show)
    report.add_figs_to_section(fig1, captions=['Signal'],
                               section='Signal quality')
#.........这里部分代码省略.........
开发者ID:davidmeunier79,项目名称:neuropype_ephy,代码行数:103,代码来源:preproc.py

示例8: test_filter

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
def test_filter():
    """Test filtering (FIR and IIR) and Raw.apply_function interface
    """
    raw = Raw(fif_fname).crop(0, 7, False)
    raw.load_data()
    sig_dec = 11
    sig_dec_notch = 12
    sig_dec_notch_fit = 12
    picks_meg = pick_types(raw.info, meg=True, exclude='bads')
    picks = picks_meg[:4]

    filter_params = dict(picks=picks, n_jobs=2, copy=True)
    raw_lp = raw.filter(0., 4.0 - 0.25, **filter_params)
    raw_hp = raw.filter(8.0 + 0.25, None, **filter_params)
    raw_bp = raw.filter(4.0 + 0.25, 8.0 - 0.25, **filter_params)
    raw_bs = raw.filter(8.0 + 0.25, 4.0 - 0.25, **filter_params)

    data, _ = raw[picks, :]

    lp_data, _ = raw_lp[picks, :]
    hp_data, _ = raw_hp[picks, :]
    bp_data, _ = raw_bp[picks, :]
    bs_data, _ = raw_bs[picks, :]

    assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
    assert_array_almost_equal(data, bp_data + bs_data, sig_dec)

    filter_params_iir = dict(picks=picks, n_jobs=2, copy=True, method='iir')
    raw_lp_iir = raw.filter(0., 4.0, **filter_params_iir)
    raw_hp_iir = raw.filter(8.0, None, **filter_params_iir)
    raw_bp_iir = raw.filter(4.0, 8.0, **filter_params_iir)
    lp_data_iir, _ = raw_lp_iir[picks, :]
    hp_data_iir, _ = raw_hp_iir[picks, :]
    bp_data_iir, _ = raw_bp_iir[picks, :]
    summation = lp_data_iir + hp_data_iir + bp_data_iir
    assert_array_almost_equal(data[:, 100:-100], summation[:, 100:-100],
                              sig_dec)

    # make sure we didn't touch other channels
    data, _ = raw[picks_meg[4:], :]
    bp_data, _ = raw_bp[picks_meg[4:], :]
    assert_array_equal(data, bp_data)
    bp_data_iir, _ = raw_bp_iir[picks_meg[4:], :]
    assert_array_equal(data, bp_data_iir)

    # ... and that inplace changes are inplace
    raw_copy = raw.copy()
    raw_copy.filter(None, 20., picks=picks, n_jobs=2, copy=False)
    assert_true(raw._data[0, 0] != raw_copy._data[0, 0])
    assert_equal(raw.filter(None, 20., **filter_params)._data,
                 raw_copy._data)

    # do a very simple check on line filtering
    with warnings.catch_warnings(record=True):
        warnings.simplefilter('always')
        raw_bs = raw.filter(60.0 + 0.5, 60.0 - 0.5, **filter_params)
        data_bs, _ = raw_bs[picks, :]
        raw_notch = raw.notch_filter(60.0, picks=picks, n_jobs=2,
                                     method='fft', copy=True)
    data_notch, _ = raw_notch[picks, :]
    assert_array_almost_equal(data_bs, data_notch, sig_dec_notch)

    # now use the sinusoidal fitting
    raw_notch = raw.notch_filter(None, picks=picks, n_jobs=2,
                                 method='spectrum_fit', copy=True)
    data_notch, _ = raw_notch[picks, :]
    data, _ = raw[picks, :]
    assert_array_almost_equal(data, data_notch, sig_dec_notch_fit)
开发者ID:Pablo-Arias,项目名称:mne-python,代码行数:70,代码来源:test_raw_fiff.py

示例9: Raw

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
import numpy as np

import mne
from mne.io import Raw
from mne.preprocessing import ICA
from mne.preprocessing import create_ecg_epochs, create_eog_epochs
from mne.datasets import sample

###############################################################################
# Setup paths and prepare raw data

data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'

raw = Raw(raw_fname, preload=True)
raw.filter(1, 45, n_jobs=1)

###############################################################################
# 1) Fit ICA model using the FastICA algorithm

# Other available choices are `infomax` or `extended-infomax`
# We pass a float value between 0 and 1 to select n_components based on the
# percentage of variance explained by the PCA components.

ica = ICA(n_components=0.95, method='fastica')

picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False,
                       stim=False, exclude='bads')

ica.fit(raw, picks=picks, decim=3, reject=dict(mag=4e-12, grad=4000e-13))
开发者ID:GrantRVD,项目名称:mne-python,代码行数:32,代码来源:plot_ica_from_raw.py

示例10: dict

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
raw_fnormal = scratch_path + "tone_task-tsss-mc-autobad.fif"
raw_fhyp = scratch_path + "hyp_tone_task-tsss-mc-autobad.fif"

reject = dict(
    grad=4000e-13,  # T / m (gradiometers)
    mag=4e-12,  # T (magnetometers)
    #  eog=250e-6  # uV (EOG channels)
)

conditions = ["normal", "hyp"]
for condition in conditions:

    if condition == "normal":
        raw = Raw(raw_fnormal, preload=True)
        raw.filter(1, 90, n_jobs=3)
        raw.notch_filter(50, n_jobs=3)
    elif condition == "hyp":
        raw = Raw(raw_fhyp, preload=True)
        raw.filter(1, 90, n_jobs=3)
        raw.notch_filter(50, n_jobs=3)

    #
    ica = ICA(n_components=0.95, method="fastica")

    picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False, stim=False, exclude="bads")

    ica.fit(raw, picks=picks, decim=3, reject=reject)

    # maximum number of components to reject
    n_max_ecg, n_max_eog = 3, 1
开发者ID:MadsJensen,项目名称:Hyp_MEG_MNE_2,代码行数:32,代码来源:filter_ICA.py

示例11: fix_triggers

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
    events_meg_[:, 1] = run  # to keep the run from which the event was found
    events_meg.append(events_meg_)
events_meg = np.vstack(events_meg)  # concatenate all meg events

# Compare MEG and Behavioral triggers
event_types = ['Target']
for event_type in event_types:
    events_behavior_type = fix_triggers(events_meg, events_behavior,
                                        event_type='trigg' + event_type)

    # Epoch raw data
    epochs_list = list()
    for run in range(1, n_runs):
        fname_raw = op.join(path_data, subject, 'run%02i.fif' % run)
        raw = Raw(fname_raw, preload=True)
        raw.filter(.75, h_freq=30.0)
        sel = events_behavior_type['meg_file'] == run
        time_sample = events_behavior_type['meg_event_tsample'][sel]
        trigger_value = events_behavior_type['meg_event_value'][sel]
        events_meg = np.vstack((time_sample.astype(int),
                                np.zeros_like(time_sample, int),
                                trigger_value.astype(int))).T
        event_id = {'ttl_%i' % ii: ii for ii in np.unique(events_meg[:, 2])}
        epochs = Epochs(raw, events_meg, event_id=event_id,
                        tmin=-1.0, tmax=.500, preload=True)
        # epochs.resample(128)  # XXX BUG MNE when concatenate afterwards
        epochs_list.append(epochs)
    epochs = concatenate_epochs(epochs_list)
    epochs.resample(128)

    # Save data
开发者ID:romquentin,项目名称:romain_wm,代码行数:33,代码来源:concate_runs.py

示例12: BSD

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
#
# License: BSD (3-clause)

import mne
from mne.io import Raw
from mne.preprocessing import ICA, create_ecg_epochs
from mne.datasets import sample

print(__doc__)

###############################################################################
# Fit ICA model using the FastICA algorithm, detect and inspect components

data_path = sample.data_path()
raw_fname = data_path + "/MEG/sample/sample_audvis_filt-0-40_raw.fif"

raw = Raw(raw_fname, preload=True)
raw.filter(1, 30, method="iir")
raw.pick_types(meg=True, eeg=False, exclude="bads", stim=True)

# longer + more epochs for more artifact exposure
events = mne.find_events(raw, stim_channel="STI 014")
epochs = mne.Epochs(raw, events, event_id=None, tmin=-0.2, tmax=0.5)

ica = ICA(n_components=0.95, method="fastica").fit(epochs)

ecg_epochs = create_ecg_epochs(raw, tmin=-0.5, tmax=0.5)
ecg_inds, scores = ica.find_bads_ecg(ecg_epochs)

ica.plot_components(ecg_inds)
开发者ID:jasmainak,项目名称:mne-python,代码行数:32,代码来源:plot_run_ica.py

示例13: Raw

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
import numpy as np
import mne
from mne.io import Raw
from mne.preprocessing import ICA
from mne.preprocessing import create_eog_epochs
from mne.datasets import sample

###############################################################################
# Setup paths and prepare raw data

data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'

raw = Raw(raw_fname, preload=True)
raw.filter(1, 45, n_jobs=2)

###############################################################################
# Setup ICA seed decompose data, then access and plot sources.

# We pass a float value between 0 and 1 to select n_components based on the
# percentage of variance explained by the PCA components.

ica = ICA(n_components=0.90, max_pca_components=None)

###############################################################################
# 1) Fit ICA model and identify bad sources

picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False,
                       stim=False, exclude='bads')
开发者ID:katcharewich,项目名称:mne-python,代码行数:31,代码来源:plot_ica_from_raw.py

示例14: Raw

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
# coh_fname = data_path + 'coh/' + subj + '_' + freq + '_subj_connectivityMatrix.txt'
# plv_fname = data_path + 'coh/' + subj+ '_' + freq + '_subj_plv_ConnectivityMatrix.txt'
# pli_fname = data_path + 'coh/' + subj+ '_' + freq + '_subj_pli_ConnectivityMatrix.txt'
cov_fname = data_path + "cov/emptyroom-cov.fif"
raw_file = data_path + run + "_raw.fif"
cohLog_file = data_path + "logs/" + subj + "_" + freq + "_" + run + "_coherence.log"
event_file = data_path + "eve/" + run + ".eve"
mne.set_log_file(fname=cohLog_file, overwrite=True)
stc_fname = data_path + "ave_projon/stc_py/" + subj + "_" + run
powenv_fname = data_path + "coh/" + subj + "_" + freq + "_" + run + "-noise_powEnv_LabelsMatrix.txt"
print fname_fwd
print

##Load Data
raw = Raw(raw_file, preload=True)
raw.filter(fmin, fmax, picks=None)
print raw.info
print "Raw data filtered to the desired freq band: " + freq
events = mne.read_events(event_file)
# inverse_operator = read_inverse_operator(fname_inv)
# label_lh = mne.read_label(fname_label_lh)

# Read epochs
epochs = mne.Epochs(
    raw,
    events,
    event_id,
    tmin,
    tmax,
    baseline=(None, 0),
    proj=True,
开发者ID:CandidaUstine,项目名称:MCW_MEG,代码行数:33,代码来源:source_mne_label_power-envelope.py

示例15: T

# 需要导入模块: from mne.io import Raw [as 别名]
# 或者: from mne.io.Raw import filter [as 别名]
                     mag=4e-12  # T (magnetometers)
                     )

# SETTINGS

#raw = Raw(save_folder + "%s_%s_filtered_mc_tsss-raw.fif" % (subject,
#                                                            condition),
#          preload=True)

raw = Raw(maxfiltered_folder + "%s_%s_mc_tsss-raw.fif" % (subject,
                                                          condition),
          preload=True)
raw.drop_channels(raw.info["bads"])

raw.notch_filter(n_freq, n_jobs=n_jobs)
raw.filter(l_freq, h_freq, n_jobs=n_jobs)

raw.save(save_folder + "%s_%s_filtered_mc_tsss-raw.fif" % (subject,
                                                           condition),
         overwrite=True)



# ICA Part
ica = ICA(n_components=0.99, method='fastica', max_iter=256)

picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False, emg=False,
                       bio=False, stim=False, exclude='bads')

ica.fit(raw, picks=picks, decim=decim, reject=reject_params)
开发者ID:MadsJensen,项目名称:RP_scripts,代码行数:32,代码来源:ICA_interactive.py


注:本文中的mne.io.Raw.filter方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。