当前位置: 首页>>代码示例>>Python>>正文


Python Character.get_single_cell_feature_vector方法代码示例

本文整理汇总了Python中Character.Character.get_single_cell_feature_vector方法的典型用法代码示例。如果您正苦于以下问题:Python Character.get_single_cell_feature_vector方法的具体用法?Python Character.get_single_cell_feature_vector怎么用?Python Character.get_single_cell_feature_vector使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Character.Character的用法示例。


在下文中一共展示了Character.get_single_cell_feature_vector方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: load_characters

# 需要导入模块: from Character import Character [as 别名]
# 或者: from Character.Character import get_single_cell_feature_vector [as 别名]
def load_characters(neighbours, blur_scale, verbose=0):
    chars_file = 'characters_%s_%s.dat' % (blur_scale, neighbours)

    if exists(chars_file):
        print 'Loading characters...'
        chars = fload(chars_file)
    else:
        print 'Going to generate character objects...'
        chars = []

        for char in sorted(listdir(IMAGES_FOLDER)):
            count = 0

            for image in sorted(listdir(IMAGES_FOLDER + char)):
                image = GrayscaleImage(IMAGES_FOLDER + char + '/' + image)
                norm = NormalizedCharacterImage(image, blur=blur_scale, \
                                                height=NORMALIZED_HEIGHT)
                character = Character(char, [], norm)
                character.get_single_cell_feature_vector(neighbours)
                chars.append(character)

                count += 1

                if verbose:
                    print 'Loaded character %s %d times' % (char, count)

        if verbose:
            print 'Saving characters...'

        fdump(chars, chars_file)

    return chars
开发者ID:imargon,项目名称:scrapy_demo,代码行数:34,代码来源:create_characters.py

示例2: classifier

# 需要导入模块: from Character import Character [as 别名]
# 或者: from Character.Character import get_single_cell_feature_vector [as 别名]
        chars.append(char)
        i += 1

        if i == count:
            br = True
            break

    if br:
        break

# Load classifier (run create_classifier.py first)
classifier = load_classifier(neighbours, blur_scale, verbose=1)

# Measure the time it takes to recognize <count> characters
start = time()

for char in chars:
    # Normalize the character image
    char.image = NormalizedCharacterImage(image, blur=blur_scale, height=42)

    # Create the image's feature vector
    char.get_single_cell_feature_vector(neighbours)

    # Feed the feature vector to the classifier
    classifier.classify(char)

elapsed = time() - start
individual = elapsed / count

print "Took %fs to classify %d caracters (%fms per character)" % (elapsed, count, individual * 1000)
开发者ID:taddeus,项目名称:licenseplates,代码行数:32,代码来源:test_performance.py


注:本文中的Character.Character.get_single_cell_feature_vector方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。