本文整理汇总了C++中vec3::norm方法的典型用法代码示例。如果您正苦于以下问题:C++ vec3::norm方法的具体用法?C++ vec3::norm怎么用?C++ vec3::norm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类vec3
的用法示例。
在下文中一共展示了vec3::norm方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: bilateral
void cloth::bilateral(phys::system& system) {
using namespace math;
core::each( boost::edges(mesh), [&](const mesh_type::edge_descriptor& e) {
natural i = boost::source(e, mesh);
natural j = boost::target(e, mesh);
auto info = mesh[e];
const vec3 diff = dofs[i].g() - dofs[j].g();
if( diff.norm() < 1e-5 ) core::log("ALARRRM");
const vec3 n = diff.normalized();
auto& J = system.constraint.bilateral.matrix;
real norm = 2 * std::sqrt( 2 * diff.squaredNorm() );
real scale = 1/norm;
J(info.key, &dofs[i]) = scale * 2 * diff.transpose(); // n.transpose();
J(info.key, &dofs[j]) = -2 * scale * diff.transpose(); // - n.transpose();
auto& b = system.constraint.bilateral.values;
b(info.key).setZero();
auto& c = system.constraint.bilateral.corrections;
c(info.key).setConstant( scale * (info.rest * info.rest - diff.squaredNorm()) );
});
}
示例2: sinf
Quaternion::Quaternion(vec3 Axis,float Angle)
{
float Temp1,Temp2;
Temp1 = Axis.norm();
Q_ASSERT(Temp1 != 0 && "Quaternion Axis is zero!");
Temp2 = sinf(Angle * 0.5F) / Temp1;
SetValues(Axis.x * Temp2,Axis.y * Temp2,Axis.z * Temp2,cosf(Angle * 0.5F));
}
示例3:
quat::quat(const vec3& axis, nv_scalar angle)
{
nv_scalar len = axis.norm();
if (len) {
nv_scalar invLen = 1 / len;
nv_scalar angle2 = angle / 2;
nv_scalar scale = _sin(angle2) * invLen;
x = scale * axis[0];
y = scale * axis[1];
z = scale * axis[2];
w = _cos(angle2);
}
}
示例4: normalize
/// Returns the normalized vector of a vector.
inline vec3 normalize(const vec3& v)
{
return (1 / v.norm()) * v;
}
示例5: cos
inline T cos(const vec3& other) {
return *this * other / norm() / other.norm();
}
示例6: reset
void graph::reset(math::natural n) {
width = n;
height = n;
obj.resize( width * height);
constraint.mesh = mesh_type( width * height );
auto pos = [&](natural i) -> vec3& {
return obj[i].conf;
};
auto vel = [&](natural i) -> vec3& {
return obj[i].velocity;
};
auto edge = [&](real rest) -> edge_type {
edge_type res;
res.rest = rest;
res.constraint = new phys::constraint::bilateral(1);
return res;
};
// place vertices
for(natural i = 0 ; i < n * n; ++i ) {
const natural x = i / width;
const natural y = i % width;
pos(i) = (sceneRadius()/2) * vec3(y, 0, x) / width;
vel(i).setZero();
}
// create edges
for(natural i = 0 ; i < n * n; ++i ) {
const natural x = i / width;
const natural y = i % width;
bool ok_height = (x < height - 1);
bool ok_width = (y < width - 1);
if( ok_height ) {
real rest = (pos(i) - pos(i + width)).norm();
boost::add_edge(i, i + width, edge(rest), constraint.mesh);
}
if( ok_width ) {
real rest = (pos(i) - pos(i + 1)).norm();
boost::add_edge(i, i + 1, edge(rest), constraint.mesh);
}
if( ok_height && ok_width ) {
// real rest = (pos(i) - pos(i + width + 1)).norm();
// boost::add_edge(i, i + width + 1, edge(rest), constraint.mesh);
// rest = (pos(i + 1) - pos(i + width)).norm();
// boost::add_edge(i + 1, i + width, edge(rest), constraint.mesh);
}
}
frame[0]->transform( SE3::translation( pos(0) ) );
frame[1]->transform( SE3::translation( pos(width - 1) ) );
system.clear();
// masses
core::each( obj, [&](const obj_type& o) {
system.mass[ &o ].setIdentity(3, 3);
system.resp[ &o ].setIdentity(3, 3);
});
constraint.lambda.clear();
constraint.update.clear();
// setup constraints
core::each( boost::edges(constraint.mesh), [&](const mesh_type::edge_descriptor& e) {
auto c = constraint.mesh[e].constraint;
natural i = boost::source(e, constraint.mesh);
natural j = boost::target(e, constraint.mesh);
const real rest = constraint.mesh[e].rest;
constraint.update[c] = [&,i,j,c,e,rest] {
const vec3 diff = obj[i].conf - obj[j].conf;
const vec3 n = diff.normalized();
auto& row = system.constraint.bilateral.matrix[ c ];
row[ &obj[i] ] = n.transpose();
row[ &obj[j] ] = -n.transpose();
const real gamma = 1;
//.........这里部分代码省略.........