当前位置: 首页>>代码示例>>C++>>正文


C++ vec3::dot方法代码示例

本文整理汇总了C++中vec3::dot方法的典型用法代码示例。如果您正苦于以下问题:C++ vec3::dot方法的具体用法?C++ vec3::dot怎么用?C++ vec3::dot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在vec3的用法示例。


在下文中一共展示了vec3::dot方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: lookAt

    static void lookAt(const vec3<Type>& eye, const vec3<Type>& center, const vec3<Type>& up)
    {
        const vec3<Type> forward = (center - eye).normalized();
        const vec3<Type> side = forward.cross(up).normalized();
        const vec3<Type> upVector = side.cross(forward);

        matrix4<Type> m;
        m.m_data[0][0] = side.x();
        m.m_data[1][0] = side.y();
        m.m_data[2][0] = side.z();
        m.m_data[3][0] = -side.dot(eye);
        m.m_data[0][1] = upVector.x();
        m.m_data[1][1] = upVector.y();
        m.m_data[2][1] = upVector.z();
        m.m_data[3][1] = -upVector.dot(eye);
        m.m_data[0][2] = -forward.x();
        m.m_data[1][2] = -forward.y();
        m.m_data[2][2] = -forward.z();
        m.m_data[3][2] = -forward.dot(eye);
        m.m_data[0][3] = 0;
        m.m_data[1][3] = 0;
        m.m_data[2][3] = 0;
        m.m_data[3][3] = 1;

        return m;
    }
开发者ID:mojocorp,项目名称:gtl,代码行数:26,代码来源:matrix4.hpp

示例2: refract

        //! Refract this vector through a surface with the given normal \a N and ratio of indices of refraction \a eta.
        vec3<Type> refract(const vec3<Type>& N, Type eta) const
        {
            const vec3<Type>& I(*this);
            const Type k = 1.0 - eta * eta * (1.0 - N.dot(I) * N.dot(I));

            return (k < 0.0) ? 0 : eta * I - (eta * N.dot(I) + std::sqrt(k)) * N;
        }
开发者ID:mojocorp,项目名称:gtl,代码行数:8,代码来源:vec3.hpp

示例3: intersect

        /*! Intersect the ray with the given triangle defined by vert0,vert1,vert2.
        Return true if there is an intersection.
        If there is an intersection, a vector a_tuv is returned, where t is the
        distance to the plane in which the triangle lies and (u,v) represents the
        coordinates inside the triangle.
        */
        bool intersect(const vec3<Type>& vert0, const vec3<Type>& vert1, const vec3<Type>& vert2, vec3<Type>& a_tuv) const
        {
            // Tomas Moller and Ben Trumbore.
            // Fast, minimum storage ray-triangle intersection.
            // Journal of graphics tools, 2(1):21-28, 1997

            // find vectors for two edges sharing vert0
            const vec3<Type> edge1 = vert1 - vert0;
            const vec3<Type> edge2 = vert2 - vert0;

            // begin calculating determinant - also used to calculate U parameter
            const vec3<Type> pvec = m_direction.cross(edge2);

            // if determinant is near zero, ray lies in plane of triangle
            const Type det = edge1.dot(pvec);

            if (det < EPS)
                return false;

            // calculate distance from vert0 to ray origin
            const vec3<Type> tvec = m_origin - vert0;

            // calculate U parameter and test bounds
            a_tuv[1] = tvec.dot(pvec);

            if (a_tuv[1] < 0.0 || a_tuv[1] > det)
                return false;

            // prepare to test V parameter
            const vec3<Type> qvec = tvec.cross(edge1);

            // calculate V parameter and test bounds
            a_tuv[2] = m_origin.dot(qvec);

            if (a_tuv[2] < 0.0 || a_tuv[1] + a_tuv[2] > det)
                return false;

            // calculate t, scale parameters, ray intersects triangle
            a_tuv[0] = edge2.dot(qvec);

            const Type inv_det = (Type)1.0 / det;

            a_tuv[0] *= inv_det;
            a_tuv[1] *= inv_det;
            a_tuv[2] *= inv_det;

            return true;
        }
开发者ID:mojocorp,项目名称:gtl,代码行数:54,代码来源:ray.hpp

示例4: intersect

        //! Intersect ray and sphere, returning true if there is an intersection.
        bool intersect(const ray<Type>& r, Type& tmin, Type& tmax) const
        {
            const vec3<Type> r_to_s = r.getOrigin() - m_center;

            //Compute A, B and C coefficients
            const Type A = r.getDirection().sqrLength();
            const Type B = 2.0f * r_to_s.dot(r.getDirection());
            const Type C = r_to_s.sqrLength() - m_radius * m_radius;

            //Find discriminant
            Type disc = B * B - 4.0 * A * C;

            // if discriminant is negative there are no real roots
            if (disc < 0.0)
                return false;

            disc = (Type)std::sqrt((double)disc);

            tmin = (-B + disc) / (2.0 * A);
            tmax = (-B - disc) / (2.0 * A);

            // check if we're inside it
            if ((tmin < 0.0 && tmax > 0) || (tmin > 0 && tmax < 0))
                return false;

            if (tmin > tmax)
                std::swap(tmin, tmax);

            return (tmin > 0);
        }
开发者ID:mojocorp,项目名称:gtl,代码行数:31,代码来源:sphere.hpp

示例5: line_sphere_intersect

inline bool line_sphere_intersect(const vec3 &start, const vec3 &end, const vec3 &sp_center, const float sp_radius)
{
    const vec3 diff = end - start;
    const float len = nya_math::clamp(diff.dot(sp_center - start) / diff.length_sq(), 0.0f, 1.0f);
    const vec3 inter_pt = start + len  * diff;
    return (inter_pt - sp_center).length_sq() <= sp_radius * sp_radius;
}
开发者ID:Dracophoenix1,项目名称:open-horizon,代码行数:7,代码来源:game.cpp

示例6:

void
plane::
setNormPt ( const vec3& norm, const vec3& ptOnplane )
{
	offset = norm.dot ( ptOnplane );
	normal = norm;
}
开发者ID:prwhite,项目名称:philibs,代码行数:7,代码来源:pniplane.cpp

示例7:

quat::quat(const vec3 &from,const vec3 &to)
{
    float len=sqrtf(from.length_sq() * to.length_sq());
    if(len<0.0001f)
    {
        w=1.0f;
        return;
    }

    w=sqrtf(0.5f*(1.0f + from.dot(to)/len));
    v=vec3::cross(from,to)/(len*2.0f*w);
}
开发者ID:weimingtom,项目名称:nya-engine,代码行数:12,代码来源:quaternion.cpp

示例8: parallel

        /*! Calculate the shortest line between two lines in 3D
          Calculate also the values of mua and mub where
            Pa = P1 + mua (P2 - P1)
            Pb = P3 + mub (P4 - P3)
          Return false if no solution exists.

          Two lines in 3 dimensions generally don't intersect at a point, they may
          be parallel (no intersections) or they may be coincident (infinite intersections)
          but most often only their projection onto a plane intersect..
          When they don't exactly intersect at a point they can be connected by a line segment,
          the shortest line segment is unique and is often considered to be their intersection in 3D.
          */
        bool intersect(const ray<Type>& a_ray, Type& mua, Type& mub) const
        {
            // Based on code from Paul Bourke
            // http://astronomy.swin.edu.au/~pbourke
            const vec3<Type> p1 = m_origin;
            const vec3<Type> p2 = m_origin + 1.0f * m_direction;
            const vec3<Type> p3 = a_ray.m_origin;
            const vec3<Type> p4 = a_ray.m_origin + 1.0f * a_ray.m_direction;

            const vec3<Type> p13 = p1 - p3;
            const vec3<Type> p43 = p4 - p3;

            if (std::abs(p43[0]) < EPS && std::abs(p43[1]) < EPS && std::abs(p43[2]) < EPS)
                return false;

            const vec3<Type> p21 = p2 - p1;

            if (std::abs(p21[0]) < EPS && std::abs(p21[1]) < EPS && std::abs(p21[2]) < EPS)
                return false;

            const Type d1343 = p13.dot(p43);
            const Type d4321 = p43.dot(p21);
            const Type d1321 = p13.dot(p21);
            const Type d4343 = p43.dot(p43);
            const Type d2121 = p21.dot(p21);

            const Type denom = d2121 * d4343 - d4321 * d4321;

            if (std::abs(denom) < EPS)
                return false;

            const Type numer = d1343 * d4321 - d1321 * d4343;

            mua = numer / denom;
            mub = (d1343 + d4321 * mua) / d4343;

            return true;
        }
开发者ID:mojocorp,项目名称:gtl,代码行数:50,代码来源:ray.hpp

示例9: Square

bool
prSphere::Hits(const Ray &r) const
{
	const vec3 vec = r.pos-mCenter;
	const real b = -vec.dot(r.dir);
	real det = Square(b) - r.dir.dot(r.dir) * vec.sqr_length() + mSqrRadius;
	if (det > real(0)) {
		det = det.Sqrt();
		const real
			i1 = b - det,
			i2 = b + det;
		if (i2 > r.minDist) {
			if (mMaterialFront && i1 < r.dist && i1 > r.minDist) {
				return true;
			} else if (mMaterialBack && i2 < r.dist) {
				return true;
			}
		}
	}
	return false;
}
开发者ID:vshymanskyy,项目名称:O_oRT,代码行数:21,代码来源:prSphere.cpp

示例10: traceray

vec3 traceray(const vec3 &origin, const vec3 &dir, int depth)
{
	if (depth == 0)
		return vec3();

	vec3 fcolor = bgcolor;
	int obj;
	float t;

	if ((obj = intersect(origin, dir, t)) != -1) {
		fcolor = ambient.mult(myobj_mat[obj].color);
		int light_size = sizeof(light_pos) / sizeof(vec3);
		int obj_size = sizeof(mysph_pos) / sizeof(vec3);
		vec3 pos = origin + (dir * t);

		for (int i = 0; i < light_size; i++) {
			vec3 lightray = normalize(light_pos[i] - pos);
			float temp;

			if (intersect(pos, lightray, temp) == -1) {
				if (myobj_mat[obj].kd > 0) {
					vec3 nor = normalize(pos - mysph_pos[obj]);
					fcolor = fcolor + ((light_color[i] * (nor.dot(lightray)) * myobj_mat[obj].kd).mult(myobj_mat[obj].color));
				}

				if (myobj_mat[obj].ks > 0) {
					vec3 refDir = mirrorDir(pos, lightray, obj) * (-1);
					fcolor = fcolor + ((light_color[i] * (dir.dot(refDir)) * myobj_mat[obj].ks).mult(myobj_mat[obj].color));
				}
			}

			if(myobj_mat[obj].kr > 0)
				fcolor = fcolor + ((traceray(pos, mirrorDir(pos, dir, obj), depth - 1) * myobj_mat[obj].kr).mult(myobj_mat[obj].color));
		}
	}

	// note that, before returning the color, the computed color may be rounded to [0.0, 1.0].
	fcolor = clamp(fcolor);
	return fcolor;
}
开发者ID:love854baby,项目名称:RayTrace,代码行数:40,代码来源:main.cpp

示例11: applyShading

vec3 GlobalLight::applyShading(vec3 fragColor, vec3 fragPos, vec3 normal) {
    // ambient
    double ambientStrength = 0.03;
    vec3 ambient = color * ambientStrength;

    // diffuse
    vec3 lightDir = pos - fragPos;
    lightDir = lightDir.normalize();

    vec3 diffuse = color * std::max(0.0, normal.dot(lightDir));

    // specular
    double specularStrength = 0.3;
    double shininess = 16.0;
    vec3 viewDir = vec3() - fragPos;
    viewDir = viewDir.normalize();
    lightDir = lightDir * -1;
    vec3 reflection = lightDir.reflect(normal);

    vec3 specular = color * pow(std::max(0.0, reflection.dot(viewDir)), shininess) * specularStrength;

    return fragColor * (ambient + diffuse + specular);
}
开发者ID:sm4rtp01nt3r,项目名称:RayTracer,代码行数:23,代码来源:globallight.cpp

示例12: reflect

        //! Return this vector reflected off the surface with the given normal \a N. N should be normalized.
        vec3<Type> reflect(const vec3<Type>& N) const
        {
            const vec3<Type>& I(*this);

            return I - 2 * N.dot(I) * N;
        }
开发者ID:mojocorp,项目名称:gtl,代码行数:7,代码来源:vec3.hpp


注:本文中的vec3::dot方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。