Augment 接受模型对象和数据集,并添加有关数据集中每个观察值的信息。最常见的是,这包括 .fitted
列中的预测值、.resid
列中的残差以及 .se.fit
列中拟合值的标准误差。新列始终以 .
前缀开头,以避免覆盖原始数据集中的列。
用户可以通过 data
参数或 newdata
参数传递数据以进行增强。如果用户将数据传递给 data
参数,则它必须正是用于拟合模型对象的数据。将数据集传递给 newdata
以扩充模型拟合期间未使用的数据。这仍然要求至少存在用于拟合模型的所有预测变量列。如果用于拟合模型的原始结果变量未包含在 newdata
中,则输出中不会包含 .resid
列。
根据是否给出 data
或 newdata
,增强的行为通常会有所不同。这是因为通常存在与训练观察(例如影响或相关)测量相关的信息,而这些信息对于新观察没有有意义的定义。
为了方便起见,许多增强方法提供默认的 data
参数,以便 augment(fit)
将返回增强的训练数据。在这些情况下,augment 尝试根据模型对象重建原始数据,并取得了不同程度的成功。
增强数据集始终以 tibble::tibble 形式返回,其行数与传递的数据集相同。这意味着传递的数据必须可强制转换为 tibble。如果预测变量将模型作为协变量矩阵的一部分输入,例如当模型公式使用 splines::ns()
、 stats::poly()
或 survival::Surv()
时,它会表示为矩阵列。
我们正在定义适合各种 na.action
参数的模型的行为,但目前不保证数据丢失时的行为。
参数
- x
-
从
spatialreg::lagsarlm()
或spatialreg::errorsarlm()
返回的对象。 - data
-
被忽略,但为了内部一致性而包含在内。请参阅下面的详细信息。
- ...
-
附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到
...
中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递conf.lvel = 0.9
,所有计算将使用conf.level = 0.95
进行。这里有两个异常:
也可以看看
其他空间寄存器:glance.sarlm()
、tidy.sarlm()
例子
# load libraries for models and data
library(spatialreg)
#> Loading required package: spData
#> To access larger datasets in this package, install the
#> spDataLarge package with: `install.packages('spDataLarge',
#> repos='https://nowosad.github.io/drat/', type='source')`
#> Loading required package: sf
#> Linking to GEOS 3.10.2, GDAL 3.4.1, PROJ 8.2.1; sf_use_s2() is TRUE
library(spdep)
#>
#> Attaching package: ‘spdep’
#> The following objects are masked from ‘package:spatialreg’:
#>
#> get.ClusterOption, get.VerboseOption, get.ZeroPolicyOption,
#> get.coresOption, get.mcOption, set.ClusterOption,
#> set.VerboseOption, set.ZeroPolicyOption, set.coresOption,
#> set.mcOption
# load data
data(oldcol, package = "spdep")
listw <- nb2listw(COL.nb, style = "W")
# fit model
crime_sar <-
lagsarlm(CRIME ~ INC + HOVAL,
data = COL.OLD,
listw = listw,
method = "eigen"
)
# summarize model fit with tidiers
tidy(crime_sar)
#> # A tibble: 4 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 rho 0.431 0.118 3.66 2.50e- 4
#> 2 (Intercept) 45.1 7.18 6.28 3.37e-10
#> 3 INC -1.03 0.305 -3.38 7.23e- 4
#> 4 HOVAL -0.266 0.0885 -3.00 2.66e- 3
tidy(crime_sar, conf.int = TRUE)
#> # A tibble: 4 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 rho 0.431 0.118 3.66 2.50e- 4 0.200 0.662
#> 2 (Intercept) 45.1 7.18 6.28 3.37e-10 31.0 59.1
#> 3 INC -1.03 0.305 -3.38 7.23e- 4 -1.63 -0.434
#> 4 HOVAL -0.266 0.0885 -3.00 2.66e- 3 -0.439 -0.0925
glance(crime_sar)
#> # A tibble: 1 × 6
#> r.squared AIC BIC deviance logLik nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 0.652 375. 384. 4679. -182. 49
augment(crime_sar)
#> # A tibble: 49 × 6
#> `(Intercept)` INC HOVAL CRIME .fitted .resid
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 21.2 44.6 18.8 22.6 -3.84
#> 2 1 4.48 33.2 32.4 46.6 -14.2
#> 3 1 11.3 37.1 38.4 41.4 -2.97
#> 4 1 8.44 75 0.178 37.9 -37.7
#> 5 1 19.5 80.5 15.7 14.2 1.54
#> 6 1 16.0 26.4 30.6 34.3 -3.66
#> 7 1 11.3 23.2 50.7 44.7 5.99
#> 8 1 16.0 28.8 26.1 38.4 -12.3
#> 9 1 9.87 18 48.6 51.7 -3.12
#> 10 1 13.6 96.4 34.0 16.3 17.7
#> # ℹ 39 more rows
# fit another model
crime_sem <- errorsarlm(CRIME ~ INC + HOVAL, data = COL.OLD, listw)
# summarize model fit with tidiers
tidy(crime_sem)
#> # A tibble: 4 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 59.9 5.37 11.2 0
#> 2 INC -0.941 0.331 -2.85 0.00441
#> 3 HOVAL -0.302 0.0905 -3.34 0.000836
#> 4 lambda 0.562 0.134 4.20 0.0000271
tidy(crime_sem, conf.int = TRUE)
#> # A tibble: 4 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 59.9 5.37 11.2 0 49.4 70.4
#> 2 INC -0.941 0.331 -2.85 0.00441 -1.59 -0.293
#> 3 HOVAL -0.302 0.0905 -3.34 0.000836 -0.480 -0.125
#> 4 lambda 0.562 0.134 4.20 0.0000271 0.299 0.824
glance(crime_sem)
#> # A tibble: 1 × 6
#> r.squared AIC BIC deviance logLik nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 0.658 377. 386. 4683. -183. 49
augment(crime_sem)
#> # A tibble: 49 × 6
#> `(Intercept)` INC HOVAL CRIME .fitted .resid
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 21.2 44.6 18.8 22.5 -3.70
#> 2 1 4.48 33.2 32.4 44.9 -12.5
#> 3 1 11.3 37.1 38.4 38.2 0.223
#> 4 1 8.44 75 0.178 35.0 -34.8
#> 5 1 19.5 80.5 15.7 13.3 2.45
#> 6 1 16.0 26.4 30.6 35.0 -4.33
#> 7 1 11.3 23.2 50.7 42.3 8.41
#> 8 1 16.0 28.8 26.1 39.4 -13.3
#> 9 1 9.87 18 48.6 49.3 -0.721
#> 10 1 13.6 96.4 34.0 16.6 17.4
#> # ℹ 39 more rows
# fit another model
crime_sac <- sacsarlm(CRIME ~ INC + HOVAL, data = COL.OLD, listw)
# summarize model fit with tidiers
tidy(crime_sac)
#> # A tibble: 5 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 rho 0.368 0.197 1.87 0.0613
#> 2 (Intercept) 47.8 9.90 4.83 0.00000140
#> 3 INC -1.03 0.326 -3.14 0.00167
#> 4 HOVAL -0.282 0.0900 -3.13 0.00176
#> 5 lambda 0.167 0.297 0.562 0.574
tidy(crime_sac, conf.int = TRUE)
#> # A tibble: 5 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 rho 0.368 0.197 1.87 0.0613 -0.0174 0.754
#> 2 (Intercept) 47.8 9.90 4.83 0.00000140 28.4 67.2
#> 3 INC -1.03 0.326 -3.14 0.00167 -1.67 -0.386
#> 4 HOVAL -0.282 0.0900 -3.13 0.00176 -0.458 -0.105
#> 5 lambda 0.167 0.297 0.562 0.574 -0.415 0.748
glance(crime_sac)
#> # A tibble: 1 × 6
#> r.squared AIC BIC deviance logLik nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 0.652 376. 388. 4685. -182. 49
augment(crime_sac)
#> # A tibble: 49 × 6
#> `(Intercept)` INC HOVAL CRIME .fitted .resid
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 21.2 44.6 18.8 22.2 -3.37
#> 2 1 4.48 33.2 32.4 46.4 -14.0
#> 3 1 11.3 37.1 38.4 40.4 -2.00
#> 4 1 8.44 75 0.178 37.5 -37.3
#> 5 1 19.5 80.5 15.7 13.5 2.25
#> 6 1 16.0 26.4 30.6 34.4 -3.74
#> 7 1 11.3 23.2 50.7 44.1 6.60
#> 8 1 16.0 28.8 26.1 39.0 -12.9
#> 9 1 9.87 18 48.6 51.5 -2.93
#> 10 1 13.6 96.4 34.0 15.8 18.2
#> # ℹ 39 more rows
相关用法
- R broom augment.speedlm 使用来自 speedlm 对象的信息增强数据
- R broom augment.smooth.spline 整理一个(n)smooth.spline对象
- R broom augment.survreg 使用来自 survreg 对象的信息增强数据
- R broom augment.betamfx 使用来自 betamfx 对象的信息增强数据
- R broom augment.robustbase.glmrob 使用来自 glmrob 对象的信息增强数据
- R broom augment.rlm 使用来自 rlm 对象的信息增强数据
- R broom augment.htest 使用来自(n)个 htest 对象的信息来增强数据
- R broom augment.clm 使用来自 clm 对象的信息增强数据
- R broom augment.felm 使用来自 (n) 个 felm 对象的信息来增强数据
- R broom augment.drc 使用来自 a(n) drc 对象的信息增强数据
- R broom augment.decomposed.ts 使用来自 decomposed.ts 对象的信息增强数据
- R broom augment.poLCA 使用来自 poLCA 对象的信息增强数据
- R broom augment.lm 使用来自 (n) lm 对象的信息增强数据
- R broom augment.rqs 使用来自 (n) 个 rqs 对象的信息来增强数据
- R broom augment.polr 使用来自 (n) 个 polr 对象的信息增强数据
- R broom augment.plm 使用来自 plm 对象的信息增强数据
- R broom augment.nls 使用来自 nls 对象的信息增强数据
- R broom augment.gam 使用来自 gam 对象的信息增强数据
- R broom augment.fixest 使用来自(n)个最固定对象的信息来增强数据
- R broom augment.rq 使用来自 a(n) rq 对象的信息增强数据
- R broom augment.Mclust 使用来自 Mclust 对象的信息增强数据
- R broom augment.nlrq 整理 a(n) nlrq 对象
- R broom augment.robustbase.lmrob 使用来自 lmrob 对象的信息增强数据
- R broom augment.lmRob 使用来自 lmRob 对象的信息增强数据
- R broom augment.mlogit 使用来自 mlogit 对象的信息增强数据
注:本文由纯净天空筛选整理自等大神的英文原创作品 Augment data with information from a(n) spatialreg object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。