当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom augment.sarlm 使用来自(n)个spatialreg对象的信息来增强数据


Augment 接受模型对象和数据集,并添加有关数据集中每个观察值的信息。最常见的是,这包括 .fitted 列中的预测值、.resid 列中的残差以及 .se.fit 列中拟合值的标准误差。新列始终以 . 前缀开头,以避免覆盖原始数据集中的列。

用户可以通过 data 参数或 newdata 参数传递数据以进行增强。如果用户将数据传递给 data 参数,则它必须正是用于拟合模型对象的数据。将数据集传递给 newdata 以扩充模型拟合期间未使用的数据。这仍然要求至少存在用于拟合模型的所有预测变量列。如果用于拟合模型的原始结果变量未包含在 newdata 中,则输出中不会包含 .resid 列。

根据是否给出 datanewdata,增强的行为通常会有所不同。这是因为通常存在与训练观察(例如影响或相关)测量相关的信息,而这些信息对于新观察没有有意义的定义。

为了方便起见,许多增强方法提供默认的 data 参数,以便 augment(fit) 将返回增强的训练数据。在这些情况下,augment 尝试根据模型对象重建原始数据,并取得了不同程度的成功。

增强数据集始终以 tibble::tibble 形式返回,其行数与传递的数据集相同。这意味着传递的数据必须可强制转换为 tibble。如果预测变量将模型作为协变量矩阵的一部分输入,例如当模型公式使用 splines::ns()stats::poly()survival::Surv() 时,它会表示为矩阵列。

我们正在定义适合各种 na.action 参数的模型的行为,但目前不保证数据丢失时的行为。

用法

# S3 method for sarlm
augment(x, data = x$X, ...)

参数

x

spatialreg::lagsarlm()spatialreg::errorsarlm() 返回的对象。

data

被忽略,但为了内部一致性而包含在内。请参阅下面的详细信息。

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

细节

Sarlm 对象的预测方法假设响应已知。有关更多讨论,请参阅 ?predict.sarlm。因此,由于可以从拟合对象中恢复原始数据,因此该方法当前不接受 datanewdata 参数。

也可以看看

augment()

其他空间寄存器:glance.sarlm()tidy.sarlm()

带有列的 tibble::tibble()

.fitted

拟合值或预测值。

.resid

观察值和拟合值之间的差异。

例子



# load libraries for models and data
library(spatialreg)
#> Loading required package: spData
#> To access larger datasets in this package, install the
#> spDataLarge package with: `install.packages('spDataLarge',
#> repos='https://nowosad.github.io/drat/', type='source')`
#> Loading required package: sf
#> Linking to GEOS 3.10.2, GDAL 3.4.1, PROJ 8.2.1; sf_use_s2() is TRUE
library(spdep)
#> 
#> Attaching package: ‘spdep’
#> The following objects are masked from ‘package:spatialreg’:
#> 
#>     get.ClusterOption, get.VerboseOption, get.ZeroPolicyOption,
#>     get.coresOption, get.mcOption, set.ClusterOption,
#>     set.VerboseOption, set.ZeroPolicyOption, set.coresOption,
#>     set.mcOption

# load data
data(oldcol, package = "spdep")

listw <- nb2listw(COL.nb, style = "W")

# fit model
crime_sar <-
  lagsarlm(CRIME ~ INC + HOVAL,
    data = COL.OLD,
    listw = listw,
    method = "eigen"
  )

# summarize model fit with tidiers
tidy(crime_sar)
#> # A tibble: 4 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 rho            0.431    0.118       3.66 2.50e- 4
#> 2 (Intercept)   45.1      7.18        6.28 3.37e-10
#> 3 INC           -1.03     0.305      -3.38 7.23e- 4
#> 4 HOVAL         -0.266    0.0885     -3.00 2.66e- 3
tidy(crime_sar, conf.int = TRUE)
#> # A tibble: 4 × 7
#>   term        estimate std.error statistic  p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 rho            0.431    0.118       3.66 2.50e- 4    0.200    0.662 
#> 2 (Intercept)   45.1      7.18        6.28 3.37e-10   31.0     59.1   
#> 3 INC           -1.03     0.305      -3.38 7.23e- 4   -1.63    -0.434 
#> 4 HOVAL         -0.266    0.0885     -3.00 2.66e- 3   -0.439   -0.0925
glance(crime_sar)
#> # A tibble: 1 × 6
#>   r.squared   AIC   BIC deviance logLik  nobs
#>       <dbl> <dbl> <dbl>    <dbl>  <dbl> <int>
#> 1     0.652  375.  384.    4679.  -182.    49
augment(crime_sar)
#> # A tibble: 49 × 6
#>    `(Intercept)`   INC HOVAL  CRIME .fitted .resid
#>            <dbl> <dbl> <dbl>  <dbl>   <dbl>  <dbl>
#>  1             1 21.2   44.6 18.8      22.6  -3.84
#>  2             1  4.48  33.2 32.4      46.6 -14.2 
#>  3             1 11.3   37.1 38.4      41.4  -2.97
#>  4             1  8.44  75    0.178    37.9 -37.7 
#>  5             1 19.5   80.5 15.7      14.2   1.54
#>  6             1 16.0   26.4 30.6      34.3  -3.66
#>  7             1 11.3   23.2 50.7      44.7   5.99
#>  8             1 16.0   28.8 26.1      38.4 -12.3 
#>  9             1  9.87  18   48.6      51.7  -3.12
#> 10             1 13.6   96.4 34.0      16.3  17.7 
#> # ℹ 39 more rows

# fit another model
crime_sem <- errorsarlm(CRIME ~ INC + HOVAL, data = COL.OLD, listw)

# summarize model fit with tidiers
tidy(crime_sem)
#> # A tibble: 4 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)   59.9      5.37       11.2  0        
#> 2 INC           -0.941    0.331      -2.85 0.00441  
#> 3 HOVAL         -0.302    0.0905     -3.34 0.000836 
#> 4 lambda         0.562    0.134       4.20 0.0000271
tidy(crime_sem, conf.int = TRUE)
#> # A tibble: 4 × 7
#>   term        estimate std.error statistic   p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>    <dbl>     <dbl>
#> 1 (Intercept)   59.9      5.37       11.2  0           49.4      70.4  
#> 2 INC           -0.941    0.331      -2.85 0.00441     -1.59     -0.293
#> 3 HOVAL         -0.302    0.0905     -3.34 0.000836    -0.480    -0.125
#> 4 lambda         0.562    0.134       4.20 0.0000271    0.299     0.824
glance(crime_sem)
#> # A tibble: 1 × 6
#>   r.squared   AIC   BIC deviance logLik  nobs
#>       <dbl> <dbl> <dbl>    <dbl>  <dbl> <int>
#> 1     0.658  377.  386.    4683.  -183.    49
augment(crime_sem)
#> # A tibble: 49 × 6
#>    `(Intercept)`   INC HOVAL  CRIME .fitted  .resid
#>            <dbl> <dbl> <dbl>  <dbl>   <dbl>   <dbl>
#>  1             1 21.2   44.6 18.8      22.5  -3.70 
#>  2             1  4.48  33.2 32.4      44.9 -12.5  
#>  3             1 11.3   37.1 38.4      38.2   0.223
#>  4             1  8.44  75    0.178    35.0 -34.8  
#>  5             1 19.5   80.5 15.7      13.3   2.45 
#>  6             1 16.0   26.4 30.6      35.0  -4.33 
#>  7             1 11.3   23.2 50.7      42.3   8.41 
#>  8             1 16.0   28.8 26.1      39.4 -13.3  
#>  9             1  9.87  18   48.6      49.3  -0.721
#> 10             1 13.6   96.4 34.0      16.6  17.4  
#> # ℹ 39 more rows

# fit another model
crime_sac <- sacsarlm(CRIME ~ INC + HOVAL, data = COL.OLD, listw)

# summarize model fit with tidiers
tidy(crime_sac)
#> # A tibble: 5 × 5
#>   term        estimate std.error statistic    p.value
#>   <chr>          <dbl>     <dbl>     <dbl>      <dbl>
#> 1 rho            0.368    0.197      1.87  0.0613    
#> 2 (Intercept)   47.8      9.90       4.83  0.00000140
#> 3 INC           -1.03     0.326     -3.14  0.00167   
#> 4 HOVAL         -0.282    0.0900    -3.13  0.00176   
#> 5 lambda         0.167    0.297      0.562 0.574     
tidy(crime_sac, conf.int = TRUE)
#> # A tibble: 5 × 7
#>   term        estimate std.error statistic    p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>     <dbl>      <dbl>    <dbl>     <dbl>
#> 1 rho            0.368    0.197      1.87  0.0613      -0.0174     0.754
#> 2 (Intercept)   47.8      9.90       4.83  0.00000140  28.4       67.2  
#> 3 INC           -1.03     0.326     -3.14  0.00167     -1.67      -0.386
#> 4 HOVAL         -0.282    0.0900    -3.13  0.00176     -0.458     -0.105
#> 5 lambda         0.167    0.297      0.562 0.574       -0.415      0.748
glance(crime_sac)
#> # A tibble: 1 × 6
#>   r.squared   AIC   BIC deviance logLik  nobs
#>       <dbl> <dbl> <dbl>    <dbl>  <dbl> <int>
#> 1     0.652  376.  388.    4685.  -182.    49
augment(crime_sac)
#> # A tibble: 49 × 6
#>    `(Intercept)`   INC HOVAL  CRIME .fitted .resid
#>            <dbl> <dbl> <dbl>  <dbl>   <dbl>  <dbl>
#>  1             1 21.2   44.6 18.8      22.2  -3.37
#>  2             1  4.48  33.2 32.4      46.4 -14.0 
#>  3             1 11.3   37.1 38.4      40.4  -2.00
#>  4             1  8.44  75    0.178    37.5 -37.3 
#>  5             1 19.5   80.5 15.7      13.5   2.25
#>  6             1 16.0   26.4 30.6      34.4  -3.74
#>  7             1 11.3   23.2 50.7      44.1   6.60
#>  8             1 16.0   28.8 26.1      39.0 -12.9 
#>  9             1  9.87  18   48.6      51.5  -2.93
#> 10             1 13.6   96.4 34.0      15.8  18.2 
#> # ℹ 39 more rows
源代码:R/spdep-tidiers.R

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Augment data with information from a(n) spatialreg object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。