当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom augment.pam 使用来自 pam 对象的信息增强数据


Augment 接受模型对象和数据集,并添加有关数据集中每个观察值的信息。最常见的是,这包括 .fitted 列中的预测值、.resid 列中的残差以及 .se.fit 列中拟合值的标准误差。新列始终以 . 前缀开头,以避免覆盖原始数据集中的列。

用户可以通过 data 参数或 newdata 参数传递数据以进行增强。如果用户将数据传递给 data 参数,则它必须正是用于拟合模型对象的数据。将数据集传递给 newdata 以扩充模型拟合期间未使用的数据。这仍然要求至少存在用于拟合模型的所有预测变量列。如果用于拟合模型的原始结果变量未包含在 newdata 中,则输出中不会包含 .resid 列。

根据是否给出 datanewdata,增强的行为通常会有所不同。这是因为通常存在与训练观察(例如影响或相关)测量相关的信息,而这些信息对于新观察没有有意义的定义。

为了方便起见,许多增强方法提供默认的 data 参数,以便 augment(fit) 将返回增强的训练数据。在这些情况下,augment 尝试根据模型对象重建原始数据,并取得了不同程度的成功。

增强数据集始终以 tibble::tibble 形式返回,其行数与传递的数据集相同。这意味着传递的数据必须可强制转换为 tibble。如果预测变量将模型作为协变量矩阵的一部分输入,例如当模型公式使用 splines::ns()stats::poly()survival::Surv() 时,它会表示为矩阵列。

我们正在定义适合各种 na.action 参数的模型的行为,但目前不保证数据丢失时的行为。

用法

# S3 method for pam
augment(x, data = NULL, ...)

参数

x

cluster::pam() 返回的 pam 对象

data

base::data.frametibble::tibble() 包含用于生成对象 x 的原始数据。默认为stats::model.frame(x),以便augment(my_fit) 返回增强的原始数据。不要将新数据传递给 data 参数。增强将报告传递给 data 参数的数据的影响和烹饪距离等信息。这些度量仅针对原始训练数据定义。

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

也可以看看

augment() , cluster::pam()

其他 pam 整理器:glance.pam()tidy.pam()

带有列的 tibble::tibble()

.cluster

集群分配。

.fitted

拟合值或预测值。

.resid

观察值和拟合值之间的差异。

例子


# load libraries for models and data
library(dplyr)
library(ggplot2)
library(cluster)
library(modeldata)
data(hpc_data)

x <- hpc_data[, 2:5]
p <- pam(x, k = 4)

# summarize model fit with tidiers + visualization
tidy(p)
#> # A tibble: 4 × 11
#>    size max.diss avg.diss diameter separation avg.width cluster compounds
#>   <dbl>    <dbl>    <dbl>    <dbl>      <dbl>     <dbl> <fct>       <dbl>
#> 1  3544   13865.     576.   15128.       93.6    0.711  1             242
#> 2   412    3835.    1111.    5704.       93.2    0.398  2             317
#> 3   236    3882.    1317.    5852.       93.2    0.516  3             240
#> 4   139   42999.    5582.   46451.      151.     0.0843 4             724
#> # ℹ 3 more variables: input_fields <dbl>, iterations <dbl>,
#> #   num_pending <dbl>
glance(p)
#> # A tibble: 1 × 1
#>   avg.silhouette.width
#>                  <dbl>
#> 1                0.650
augment(p, x)
#> # A tibble: 4,331 × 5
#>    compounds input_fields iterations num_pending .cluster
#>        <dbl>        <dbl>      <dbl>       <dbl> <fct>   
#>  1       997          137         20           0 1       
#>  2        97          103         20           0 1       
#>  3       101           75         10           0 1       
#>  4        93           76         20           0 1       
#>  5       100           82         20           0 1       
#>  6       100           82         20           0 1       
#>  7       105           88         20           0 1       
#>  8        98           95         20           0 1       
#>  9       101           91         20           0 1       
#> 10        95           92         20           0 1       
#> # ℹ 4,321 more rows

augment(p, x) %>%
  ggplot(aes(compounds, input_fields)) +
  geom_point(aes(color = .cluster)) +
  geom_text(aes(label = cluster), data = tidy(p), size = 10)

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Augment data with information from a(n) pam object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。