本文整理汇总了Python中torch.Tensor.numel方法的典型用法代码示例。如果您正苦于以下问题:Python Tensor.numel方法的具体用法?Python Tensor.numel怎么用?Python Tensor.numel使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.Tensor
的用法示例。
在下文中一共展示了Tensor.numel方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __call__
# 需要导入模块: from torch import Tensor [as 别名]
# 或者: from torch.Tensor import numel [as 别名]
def __call__(self,
predictions: torch.Tensor,
gold_labels: torch.Tensor,
mask: Optional[torch.Tensor] = None):
"""
Parameters
----------
predictions : ``torch.Tensor``, required.
A tensor of predictions of shape (batch_size, ..., num_classes).
gold_labels : ``torch.Tensor``, required.
A tensor of integer class label of shape (batch_size, ...). It must be the same
shape as the ``predictions`` tensor without the ``num_classes`` dimension.
mask: ``torch.Tensor``, optional (default = None).
A masking tensor the same size as ``gold_labels``.
"""
predictions, gold_labels, mask = self.unwrap_to_tensors(predictions, gold_labels, mask)
# Some sanity checks.
num_classes = predictions.size(-1)
if gold_labels.dim() != predictions.dim() - 1:
raise ConfigurationError("gold_labels must have dimension == predictions.size() - 1 but "
"found tensor of shape: {}".format(predictions.size()))
if (gold_labels >= num_classes).any():
raise ConfigurationError("A gold label passed to Categorical Accuracy contains an id >= {}, "
"the number of classes.".format(num_classes))
predictions = predictions.view((-1, num_classes))
gold_labels = gold_labels.view(-1).long()
if not self._tie_break:
# Top K indexes of the predictions (or fewer, if there aren't K of them).
# Special case topk == 1, because it's common and .max() is much faster than .topk().
if self._top_k == 1:
top_k = predictions.max(-1)[1].unsqueeze(-1)
else:
top_k = predictions.topk(min(self._top_k, predictions.shape[-1]), -1)[1]
# This is of shape (batch_size, ..., top_k).
correct = top_k.eq(gold_labels.unsqueeze(-1)).float()
else:
# prediction is correct if gold label falls on any of the max scores. distribute score by tie_counts
max_predictions = predictions.max(-1)[0]
max_predictions_mask = predictions.eq(max_predictions.unsqueeze(-1))
# max_predictions_mask is (rows X num_classes) and gold_labels is (batch_size)
# ith entry in gold_labels points to index (0-num_classes) for ith row in max_predictions
# For each row check if index pointed by gold_label is was 1 or not (among max scored classes)
correct = max_predictions_mask[torch.arange(gold_labels.numel()).long(), gold_labels].float()
tie_counts = max_predictions_mask.sum(-1)
correct /= tie_counts.float()
correct.unsqueeze_(-1)
if mask is not None:
correct *= mask.view(-1, 1).float()
self.total_count += mask.sum()
else:
self.total_count += gold_labels.numel()
self.correct_count += correct.sum()
示例2: __call__
# 需要导入模块: from torch import Tensor [as 别名]
# 或者: from torch.Tensor import numel [as 别名]
def __call__(self,
predictions: torch.Tensor,
gold_labels: torch.Tensor,
mask: Optional[torch.Tensor] = None):
"""
Parameters
----------
predictions : ``torch.Tensor``, required.
A tensor of predictions of shape (batch_size, ...).
gold_labels : ``torch.Tensor``, required.
A tensor of the same shape as ``predictions``.
mask: ``torch.Tensor``, optional (default = None).
A tensor of the same shape as ``predictions``.
"""
predictions, gold_labels, mask = self.unwrap_to_tensors(predictions, gold_labels, mask)
# Flatten predictions, gold_labels, and mask. We calculate the covariance between
# the vectors, since each element in the predictions and gold_labels tensor is assumed
# to be a separate observation.
predictions = predictions.view(-1)
gold_labels = gold_labels.view(-1)
if mask is not None:
mask = mask.view(-1)
predictions = predictions * mask
gold_labels = gold_labels * mask
num_batch_items = torch.sum(mask).item()
else:
num_batch_items = gold_labels.numel()
# Note that self._total_count must be a float or int at all times
# If it is a 1-dimension Tensor, the previous count will equal the updated_count.
# The sampe applies for previous_total_prediction_mean and
# previous_total_label_mean below -- we handle this in the code by
# calling .item() judiciously.
previous_count = self._total_count
updated_count = self._total_count + num_batch_items
batch_mean_prediction = torch.sum(predictions) / num_batch_items
delta_mean_prediction = ((batch_mean_prediction - self._total_prediction_mean) *
num_batch_items) / updated_count
previous_total_prediction_mean = self._total_prediction_mean
self._total_prediction_mean += delta_mean_prediction.item()
batch_mean_label = torch.sum(gold_labels) / num_batch_items
delta_mean_label = ((batch_mean_label - self._total_label_mean) * num_batch_items) / updated_count
previous_total_label_mean = self._total_label_mean
self._total_label_mean += delta_mean_label.item()
batch_coresiduals = (predictions - batch_mean_prediction) * (gold_labels - batch_mean_label)
if mask is not None:
batch_co_moment = torch.sum(batch_coresiduals * mask)
else:
batch_co_moment = torch.sum(batch_coresiduals)
delta_co_moment = (
batch_co_moment + (previous_total_prediction_mean - batch_mean_prediction) *
(previous_total_label_mean - batch_mean_label) *
(previous_count * num_batch_items / updated_count))
self._total_co_moment += delta_co_moment.item()
self._total_count = updated_count
示例3: count_zeros
# 需要导入模块: from torch import Tensor [as 别名]
# 或者: from torch.Tensor import numel [as 别名]
def count_zeros(dist: Tensor):
""" In PyTorch (or maybe numpy as well), it can use (t < 0) condition to generate a uint8 tensor.
Then sum() to count how many elements are satisfying the condition.
numel() is for counting all the elements.
"""
safes = float((dist <= 0).sum())
total = dist.numel()
return safes / total
示例4: __call__
# 需要导入模块: from torch import Tensor [as 别名]
# 或者: from torch.Tensor import numel [as 别名]
def __call__(self,
predictions: torch.Tensor,
gold_labels: torch.Tensor,
mask: Optional[torch.Tensor] = None):
"""
Parameters
----------
predictions : ``torch.Tensor``, required.
A tensor of predictions of shape (batch_size, ..., num_classes).
gold_labels : ``torch.Tensor``, required.
A tensor of integer class label of shape (batch_size, ...). It must be the same
shape as the ``predictions`` tensor without the ``num_classes`` dimension.
mask: ``torch.Tensor``, optional (default = None).
A masking tensor the same size as ``gold_labels``.
"""
# Get the data from the Variables.
predictions, gold_labels, mask = self.unwrap_to_tensors(predictions, gold_labels, mask)
# Some sanity checks.
num_classes = predictions.size(-1)
if gold_labels.dim() != predictions.dim() - 1:
raise ConfigurationError("gold_labels must have dimension == predictions.size() - 1 but "
"found tensor of shape: {}".format(predictions.size()))
if (gold_labels >= num_classes).any():
raise ConfigurationError("A gold label passed to Categorical Accuracy contains an id >= {}, "
"the number of classes.".format(num_classes))
# Top K indexes of the predictions (or fewer, if there aren't K of them).
# Special case topk == 1, because it's common and .max() is much faster than .topk().
if self._top_k == 1:
top_k = predictions.max(-1)[1].unsqueeze(-1)
else:
top_k = predictions.topk(min(self._top_k, predictions.shape[-1]), -1)[1]
# This is of shape (batch_size, ..., top_k).
correct = top_k.eq(gold_labels.long().unsqueeze(-1)).float()
if mask is not None:
correct *= mask.float().unsqueeze(-1)
self.total_count += mask.sum()
else:
self.total_count += gold_labels.numel()
self.correct_count += correct.sum()
示例5: __call__
# 需要导入模块: from torch import Tensor [as 别名]
# 或者: from torch.Tensor import numel [as 别名]
def __call__(self,
predictions: torch.Tensor,
gold_labels: torch.Tensor,
mask: Optional[torch.Tensor] = None):
"""
Parameters
----------
predictions : ``torch.Tensor``, required.
A tensor of predictions of shape (batch_size, ...).
gold_labels : ``torch.Tensor``, required.
A tensor of the same shape as ``predictions``.
mask: ``torch.Tensor``, optional (default = None).
A tensor of the same shape as ``predictions``.
"""
predictions, gold_labels, mask = self.unwrap_to_tensors(predictions, gold_labels, mask)
absolute_errors = torch.abs(predictions - gold_labels)
if mask is not None:
absolute_errors *= mask
self._total_count += torch.sum(mask)
else:
self._total_count += gold_labels.numel()
self._absolute_error += torch.sum(absolute_errors)