当前位置: 首页>>代码示例>>Python>>正文


Python Tensor.norm方法代码示例

本文整理汇总了Python中torch.Tensor.norm方法的典型用法代码示例。如果您正苦于以下问题:Python Tensor.norm方法的具体用法?Python Tensor.norm怎么用?Python Tensor.norm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在torch.Tensor的用法示例。


在下文中一共展示了Tensor.norm方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: multi_perspective_match_pairwise

# 需要导入模块: from torch import Tensor [as 别名]
# 或者: from torch.Tensor import norm [as 别名]
def multi_perspective_match_pairwise(vector1: torch.Tensor,
                                     vector2: torch.Tensor,
                                     weight: torch.Tensor,
                                     eps: float = 1e-8) -> torch.Tensor:
    """
    Calculate multi-perspective cosine matching between each time step of
    one vector and each time step of another vector.

    Parameters
    ----------
    vector1 : ``torch.Tensor``
        A tensor of shape ``(batch, seq_len1, hidden_size)``
    vector2 : ``torch.Tensor``
        A tensor of shape ``(batch, seq_len2, hidden_size)``
    weight : ``torch.Tensor``
        A tensor of shape ``(num_perspectives, hidden_size)``
    eps : ``float`` optional, (default = 1e-8)
        A small value to avoid zero division problem

    Returns
    -------
    A tensor of shape (batch, seq_len1, seq_len2, num_perspectives) consisting
    multi-perspective matching results
    """
    num_perspectives = weight.size(0)

    # (1, num_perspectives, 1, hidden_size)
    weight = weight.unsqueeze(0).unsqueeze(2)

    # (batch, num_perspectives, seq_len*, hidden_size)
    vector1 = weight * vector1.unsqueeze(1).expand(-1, num_perspectives, -1, -1)
    vector2 = weight * vector2.unsqueeze(1).expand(-1, num_perspectives, -1, -1)

    # (batch, num_perspectives, seq_len*, 1)
    vector1_norm = vector1.norm(p=2, dim=3, keepdim=True)
    vector2_norm = vector2.norm(p=2, dim=3, keepdim=True)

    # (batch, num_perspectives, seq_len1, seq_len2)
    mul_result = torch.matmul(vector1, vector2.transpose(2, 3))
    norm_value = vector1_norm * vector2_norm.transpose(2, 3)

    # (batch, seq_len1, seq_len2, num_perspectives)
    return (mul_result / norm_value.clamp(min=eps)).permute(0, 2, 3, 1)
开发者ID:apmoore1,项目名称:allennlp,代码行数:45,代码来源:bimpm_matching.py

示例2: forward

# 需要导入模块: from torch import Tensor [as 别名]
# 或者: from torch.Tensor import norm [as 别名]
 def forward(self, tensor_1: torch.Tensor, tensor_2: torch.Tensor) -> torch.Tensor:
     normalized_tensor_1 = tensor_1 / tensor_1.norm(dim=-1, keepdim=True)
     normalized_tensor_2 = tensor_2 / tensor_2.norm(dim=-1, keepdim=True)
     return (normalized_tensor_1 * normalized_tensor_2).sum(dim=-1)
开发者ID:Jordan-Sauchuk,项目名称:allennlp,代码行数:6,代码来源:cosine.py

示例3: _forward_internal

# 需要导入模块: from torch import Tensor [as 别名]
# 或者: from torch.Tensor import norm [as 别名]
 def _forward_internal(self, vector: torch.Tensor, matrix: torch.Tensor) -> torch.Tensor:
     a_norm = vector / (vector.norm(p=2, dim=-1, keepdim=True) + 1e-13)
     b_norm = matrix / (matrix.norm(p=2, dim=-1, keepdim=True) + 1e-13)
     return torch.bmm(a_norm.unsqueeze(dim=1), b_norm.transpose(-1, -2)).squeeze(1)
开发者ID:apmoore1,项目名称:allennlp,代码行数:6,代码来源:cosine_attention.py

示例4: forward

# 需要导入模块: from torch import Tensor [as 别名]
# 或者: from torch.Tensor import norm [as 别名]
 def forward(self, matrix_1: torch.Tensor, matrix_2: torch.Tensor) -> torch.Tensor:
     a_norm = matrix_1 / (matrix_1.norm(p=2, dim=-1, keepdim=True) + 1e-13)
     b_norm = matrix_2 / (matrix_2.norm(p=2, dim=-1, keepdim=True) + 1e-13)
     return torch.bmm(a_norm, b_norm.transpose(-1, -2))
开发者ID:apmoore1,项目名称:allennlp,代码行数:6,代码来源:cosine_matrix_attention.py


注:本文中的torch.Tensor.norm方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。