本文整理汇总了Python中torch.Tensor.gather方法的典型用法代码示例。如果您正苦于以下问题:Python Tensor.gather方法的具体用法?Python Tensor.gather怎么用?Python Tensor.gather使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类torch.Tensor
的用法示例。
在下文中一共展示了Tensor.gather方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_final_encoder_states
# 需要导入模块: from torch import Tensor [as 别名]
# 或者: from torch.Tensor import gather [as 别名]
def get_final_encoder_states(encoder_outputs: torch.Tensor,
mask: torch.Tensor,
bidirectional: bool = False) -> torch.Tensor:
"""
Given the output from a ``Seq2SeqEncoder``, with shape ``(batch_size, sequence_length,
encoding_dim)``, this method returns the final hidden state for each element of the batch,
giving a tensor of shape ``(batch_size, encoding_dim)``. This is not as simple as
``encoder_outputs[:, -1]``, because the sequences could have different lengths. We use the
mask (which has shape ``(batch_size, sequence_length)``) to find the final state for each batch
instance.
Additionally, if ``bidirectional`` is ``True``, we will split the final dimension of the
``encoder_outputs`` into two and assume that the first half is for the forward direction of the
encoder and the second half is for the backward direction. We will concatenate the last state
for each encoder dimension, giving ``encoder_outputs[:, -1, :encoding_dim/2]`` concated with
``encoder_outputs[:, 0, encoding_dim/2:]``.
"""
# These are the indices of the last words in the sequences (i.e. length sans padding - 1). We
# are assuming sequences are right padded.
# Shape: (batch_size,)
last_word_indices = mask.sum(1).long() - 1
batch_size, _, encoder_output_dim = encoder_outputs.size()
expanded_indices = last_word_indices.view(-1, 1, 1).expand(batch_size, 1, encoder_output_dim)
# Shape: (batch_size, 1, encoder_output_dim)
final_encoder_output = encoder_outputs.gather(1, expanded_indices)
final_encoder_output = final_encoder_output.squeeze(1) # (batch_size, encoder_output_dim)
if bidirectional:
final_forward_output = final_encoder_output[:, :(encoder_output_dim // 2)]
final_backward_output = encoder_outputs[:, 0, (encoder_output_dim // 2):]
final_encoder_output = torch.cat([final_forward_output, final_backward_output], dim=-1)
return final_encoder_output
示例2: _joint_likelihood
# 需要导入模块: from torch import Tensor [as 别名]
# 或者: from torch.Tensor import gather [as 别名]
def _joint_likelihood(self,
logits: torch.Tensor,
tags: torch.Tensor,
mask: torch.LongTensor) -> torch.Tensor:
"""
Computes the numerator term for the log-likelihood, which is just score(inputs, tags)
"""
batch_size, sequence_length, num_tags = logits.data.shape
# Transpose batch size and sequence dimensions:
logits = logits.transpose(0, 1).contiguous()
mask = mask.float().transpose(0, 1).contiguous()
tags = tags.transpose(0, 1).contiguous()
# Start with the transition scores from start_tag to the first tag in each input
if self.include_start_end_transitions:
score = self.start_transitions.index_select(0, tags[0])
else:
score = 0.0
# Broadcast the transition scores to one per batch element
broadcast_transitions = self.transitions.view(1, num_tags, num_tags).expand(batch_size, num_tags, num_tags)
# Add up the scores for the observed transitions and all the inputs but the last
for i in range(sequence_length - 1):
# Each is shape (batch_size,)
current_tag, next_tag = tags[i], tags[i+1]
# The scores for transitioning from current_tag to next_tag
transition_score = (
broadcast_transitions
# Choose the current_tag-th row for each input
.gather(1, current_tag.view(batch_size, 1, 1).expand(batch_size, 1, num_tags))
# Squeeze down to (batch_size, num_tags)
.squeeze(1)
# Then choose the next_tag-th column for each of those
.gather(1, next_tag.view(batch_size, 1))
# And squeeze down to (batch_size,)
.squeeze(1)
)
# The score for using current_tag
emit_score = logits[i].gather(1, current_tag.view(batch_size, 1)).squeeze(1)
# Include transition score if next element is unmasked,
# input_score if this element is unmasked.
score = score + transition_score * mask[i + 1] + emit_score * mask[i]
# Transition from last state to "stop" state. To start with, we need to find the last tag
# for each instance.
last_tag_index = mask.sum(0).long() - 1
last_tags = tags.gather(0, last_tag_index.view(1, batch_size).expand(sequence_length, batch_size))
# Is (sequence_length, batch_size), but all the columns are the same, so take the first.
last_tags = last_tags[0]
# Compute score of transitioning to `stop_tag` from each "last tag".
if self.include_start_end_transitions:
last_transition_score = self.end_transitions.index_select(0, last_tags)
else:
last_transition_score = 0.0
# Add the last input if it's not masked.
last_inputs = logits[-1] # (batch_size, num_tags)
last_input_score = last_inputs.gather(1, last_tags.view(-1, 1)) # (batch_size, 1)
last_input_score = last_input_score.squeeze() # (batch_size,)
score = score + last_transition_score + last_input_score * mask[-1]
return score
示例3: forward
# 需要导入模块: from torch import Tensor [as 别名]
# 或者: from torch.Tensor import gather [as 别名]
def forward(self,
context_1: torch.Tensor,
mask_1: torch.Tensor,
context_2: torch.Tensor,
mask_2: torch.Tensor) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
# pylint: disable=arguments-differ
"""
Given the forward (or backward) representations of sentence1 and sentence2, apply four bilateral
matching functions between them in one direction.
Parameters
----------
context_1 : ``torch.Tensor``
Tensor of shape (batch_size, seq_len1, hidden_dim) representing the encoding of the first sentence.
mask_1 : ``torch.Tensor``
Binary Tensor of shape (batch_size, seq_len1), indicating which
positions in the first sentence are padding (0) and which are not (1).
context_2 : ``torch.Tensor``
Tensor of shape (batch_size, seq_len2, hidden_dim) representing the encoding of the second sentence.
mask_2 : ``torch.Tensor``
Binary Tensor of shape (batch_size, seq_len2), indicating which
positions in the second sentence are padding (0) and which are not (1).
Returns
-------
A tuple of matching vectors for the two sentences. Each of which is a list of
matching vectors of shape (batch, seq_len, num_perspectives or 1)
"""
assert (not mask_2.requires_grad) and (not mask_1.requires_grad)
assert context_1.size(-1) == context_2.size(-1) == self.hidden_dim
# (batch,)
len_1 = get_lengths_from_binary_sequence_mask(mask_1)
len_2 = get_lengths_from_binary_sequence_mask(mask_2)
# (batch, seq_len*)
mask_1, mask_2 = mask_1.float(), mask_2.float()
# explicitly set masked weights to zero
# (batch_size, seq_len*, hidden_dim)
context_1 = context_1 * mask_1.unsqueeze(-1)
context_2 = context_2 * mask_2.unsqueeze(-1)
# array to keep the matching vectors for the two sentences
matching_vector_1: List[torch.Tensor] = []
matching_vector_2: List[torch.Tensor] = []
# Step 0. unweighted cosine
# First calculate the cosine similarities between each forward
# (or backward) contextual embedding and every forward (or backward)
# contextual embedding of the other sentence.
# (batch, seq_len1, seq_len2)
cosine_sim = F.cosine_similarity(context_1.unsqueeze(-2), context_2.unsqueeze(-3), dim=3)
# (batch, seq_len*, 1)
cosine_max_1 = masked_max(cosine_sim, mask_2.unsqueeze(-2), dim=2, keepdim=True)
cosine_mean_1 = masked_mean(cosine_sim, mask_2.unsqueeze(-2), dim=2, keepdim=True)
cosine_max_2 = masked_max(cosine_sim.permute(0, 2, 1), mask_1.unsqueeze(-2), dim=2, keepdim=True)
cosine_mean_2 = masked_mean(cosine_sim.permute(0, 2, 1), mask_1.unsqueeze(-2), dim=2, keepdim=True)
matching_vector_1.extend([cosine_max_1, cosine_mean_1])
matching_vector_2.extend([cosine_max_2, cosine_mean_2])
# Step 1. Full-Matching
# Each time step of forward (or backward) contextual embedding of one sentence
# is compared with the last time step of the forward (or backward)
# contextual embedding of the other sentence
if self.with_full_match:
# (batch, 1, hidden_dim)
if self.is_forward:
# (batch, 1, hidden_dim)
last_position_1 = (len_1 - 1).clamp(min=0)
last_position_1 = last_position_1.view(-1, 1, 1).expand(-1, 1, self.hidden_dim)
last_position_2 = (len_2 - 1).clamp(min=0)
last_position_2 = last_position_2.view(-1, 1, 1).expand(-1, 1, self.hidden_dim)
context_1_last = context_1.gather(1, last_position_1)
context_2_last = context_2.gather(1, last_position_2)
else:
context_1_last = context_1[:, 0:1, :]
context_2_last = context_2[:, 0:1, :]
# (batch, seq_len*, num_perspectives)
matching_vector_1_full = multi_perspective_match(context_1,
context_2_last,
self.full_match_weights)
matching_vector_2_full = multi_perspective_match(context_2,
context_1_last,
self.full_match_weights_reversed)
matching_vector_1.extend(matching_vector_1_full)
matching_vector_2.extend(matching_vector_2_full)
# Step 2. Maxpooling-Matching
# Each time step of forward (or backward) contextual embedding of one sentence
# is compared with every time step of the forward (or backward)
# contextual embedding of the other sentence, and only the max value of each
# dimension is retained.
#.........这里部分代码省略.........