当前位置: 首页>>代码示例>>Python>>正文


Python BayesianModel.remove_cpds方法代码示例

本文整理汇总了Python中pgmpy.models.BayesianModel.remove_cpds方法的典型用法代码示例。如果您正苦于以下问题:Python BayesianModel.remove_cpds方法的具体用法?Python BayesianModel.remove_cpds怎么用?Python BayesianModel.remove_cpds使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pgmpy.models.BayesianModel的用法示例。


在下文中一共展示了BayesianModel.remove_cpds方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: TestBayesianModelCPD

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import remove_cpds [as 别名]

#.........这里部分代码省略.........
        self.assertEqual(self.G.get_cpds('d'), cpd_d)
        self.assertEqual(self.G.get_cpds('i'), cpd_i)
        self.assertEqual(self.G.get_cpds('g'), cpd_g)
        self.assertEqual(self.G.get_cpds('l'), cpd_l)
        self.assertEqual(self.G.get_cpds('s'), cpd_s)

    def test_check_model(self):
        cpd_g = TabularCPD('g', 2, 
                            np.array([[0.2, 0.3, 0.4, 0.6],
                                      [0.8, 0.7, 0.6, 0.4]]),
                                                            ['d', 'i'], [2, 2])

        cpd_s = TabularCPD('s', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
                                                ['i'], 2)

        cpd_l = TabularCPD('l', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
                                                ['g'], 2)

        self.G.add_cpds(cpd_g, cpd_s, cpd_l)
        self.assertTrue(self.G.check_model())


    def test_check_model1(self):
        cpd_g = TabularCPD('g', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
                                                 ['i'], 2)
        self.G.add_cpds(cpd_g)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_g)

        cpd_g = TabularCPD('g', 2, 
                            np.array([[0.2, 0.3, 0.4, 0.6],
                                      [0.8, 0.7, 0.6, 0.4]]),
                                                            ['d', 's'], [2, 2])
        self.G.add_cpds(cpd_g)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_g)

        cpd_g = TabularCPD('g', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
                                                 ['l'], 2)
        self.G.add_cpds(cpd_g)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_g)

        cpd_l = TabularCPD('l', 2, 
                            np.array([[0.2, 0.3],
                                      [0.8, 0.7]]),
                                                 ['d'], 2)
        self.G.add_cpds(cpd_l)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_l)

        cpd_l = TabularCPD('l', 2, 
                            np.array([[0.2, 0.3, 0.4, 0.6],
                                      [0.8, 0.7, 0.6, 0.4]]),
                                                           ['d', 'i'], [2, 2])
        self.G.add_cpds(cpd_l)
        self.assertRaises(ValueError, self.G.check_model)
        self.G.remove_cpds(cpd_l)
开发者ID:ankurankan,项目名称:pgmpy,代码行数:70,代码来源:test_BayesianModel.py

示例2: TestDirectedGraphCPDOperations

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import remove_cpds [as 别名]
class TestDirectedGraphCPDOperations(unittest.TestCase):
    def setUp(self):
        self.graph = BayesianModel()

    def test_add_single_cpd(self):
        cpd = TabularCPD('grade', 2, np.random.rand(2, 4),
                         ['diff', 'intel'], [2, 2])
        self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')])
        self.graph.add_cpds(cpd)
        self.assertListEqual(self.graph.get_cpds(), [cpd])

    def test_add_multiple_cpds(self):
        cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1))
        cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1))
        cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4),
                          ['diff', 'intel'], [2, 2])
        self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')])
        self.graph.add_cpds(cpd1, cpd2, cpd3)
        self.assertListEqual(self.graph.get_cpds(), [cpd1, cpd2, cpd3])

    def test_remove_single_cpd(self):
        cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1))
        cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1))
        cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4),
                          ['diff', 'intel'], [2, 2])
        self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')])
        self.graph.add_cpds(cpd1, cpd2, cpd3)
        self.graph.remove_cpds(cpd1)
        self.assertListEqual(self.graph.get_cpds(), [cpd2, cpd3])

    def test_remove_multiple_cpds(self):
        cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1))
        cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1))
        cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4),
                          ['diff', 'intel'], [2, 2])
        self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')])
        self.graph.add_cpds(cpd1, cpd2, cpd3)
        self.graph.remove_cpds(cpd1, cpd3)
        self.assertListEqual(self.graph.get_cpds(), [cpd2])

    def test_remove_single_cpd_string(self):
        cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1))
        cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1))
        cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4),
                          ['diff', 'intel'], [2, 2])
        self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')])
        self.graph.add_cpds(cpd1, cpd2, cpd3)
        self.graph.remove_cpds('diff')
        self.assertListEqual(self.graph.get_cpds(), [cpd2, cpd3])

    def test_remove_multiple_cpds_string(self):
        cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1))
        cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1))
        cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4),
                          ['diff', 'intel'], [2, 2])
        self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')])
        self.graph.add_cpds(cpd1, cpd2, cpd3)
        self.graph.remove_cpds('diff', 'grade')
        self.assertListEqual(self.graph.get_cpds(), [cpd2])

    def test_get_cpd_for_node(self):
        cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1))
        cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1))
        cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4),
                          ['diff', 'intel'], [2, 2])
        self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')])
        self.graph.add_cpds(cpd1, cpd2, cpd3)
        self.assertEqual(self.graph.get_cpds('diff'), cpd1)
        self.assertEqual(self.graph.get_cpds('intel'), cpd2)
        self.assertEqual(self.graph.get_cpds('grade'), cpd3)

    def test_get_cpd_raises_error(self):
        cpd1 = TabularCPD('diff', 2, np.random.rand(2, 1))
        cpd2 = TabularCPD('intel', 2, np.random.rand(2, 1))
        cpd3 = TabularCPD('grade', 2, np.random.rand(2, 4),
                          ['diff', 'intel'], [2, 2])
        self.graph.add_edges_from([('diff', 'grade'), ('intel', 'grade')])
        self.graph.add_cpds(cpd1, cpd2, cpd3)
        self.assertRaises(ValueError, self.graph.get_cpds, 'sat')

    def tearDown(self):
        del self.graph
开发者ID:ankurankan,项目名称:pgmpy,代码行数:84,代码来源:test_BayesianModel.py

示例3: TestBayesianModelMethods

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import remove_cpds [as 别名]
class TestBayesianModelMethods(unittest.TestCase):

    def setUp(self):
        self.G = BayesianModel([('a', 'd'), ('b', 'd'),
                                ('d', 'e'), ('b', 'c')])
        self.G1 = BayesianModel([('diff', 'grade'), ('intel', 'grade')])
        diff_cpd = TabularCPD('diff', 2, values=[[0.2], [0.8]])
        intel_cpd = TabularCPD('intel', 3, values=[[0.5], [0.3], [0.2]])
        grade_cpd = TabularCPD('grade', 3, values=[[0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
                                                   [0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
                                                   [0.8, 0.8, 0.8, 0.8, 0.8, 0.8]],
                               evidence=['diff', 'intel'], evidence_card=[2, 3])
        self.G1.add_cpds(diff_cpd, intel_cpd, grade_cpd)
        self.G2 = BayesianModel([('d', 'g'), ('g', 'l'), ('i', 'g'), ('i', 'l')])

    def test_moral_graph(self):
        moral_graph = self.G.moralize()
        self.assertListEqual(sorted(moral_graph.nodes()), ['a', 'b', 'c', 'd', 'e'])
        for edge in moral_graph.edges():
            self.assertTrue(edge in [('a', 'b'), ('a', 'd'), ('b', 'c'), ('d', 'b'), ('e', 'd')] or
                            (edge[1], edge[0]) in [('a', 'b'), ('a', 'd'), ('b', 'c'), ('d', 'b'), ('e', 'd')])

    def test_moral_graph_with_edge_present_over_parents(self):
        G = BayesianModel([('a', 'd'), ('d', 'e'), ('b', 'd'), ('b', 'c'), ('a', 'b')])
        moral_graph = G.moralize()
        self.assertListEqual(sorted(moral_graph.nodes()), ['a', 'b', 'c', 'd', 'e'])
        for edge in moral_graph.edges():
            self.assertTrue(edge in [('a', 'b'), ('c', 'b'), ('d', 'a'), ('d', 'b'), ('d', 'e')] or
                            (edge[1], edge[0]) in [('a', 'b'), ('c', 'b'), ('d', 'a'), ('d', 'b'), ('d', 'e')])

    def test_get_ancestors_of_success(self):
        ancenstors1 = self.G2._get_ancestors_of('g')
        ancenstors2 = self.G2._get_ancestors_of('d')
        ancenstors3 = self.G2._get_ancestors_of(['i', 'l'])
        self.assertEqual(ancenstors1, {'d', 'i', 'g'})
        self.assertEqual(ancenstors2, {'d'})
        self.assertEqual(ancenstors3, {'g', 'i', 'l', 'd'})

    def test_get_ancestors_of_failure(self):
        self.assertRaises(ValueError, self.G2._get_ancestors_of, 'h')

    def test_local_independencies(self):
        self.assertEqual(self.G.local_independencies('a'), Independencies(['a', ['b', 'c']]))
        self.assertEqual(self.G.local_independencies('c'), Independencies(['c', ['a', 'd', 'e'], 'b']))
        self.assertEqual(self.G.local_independencies('d'), Independencies(['d', 'c', ['b', 'a']]))
        self.assertEqual(self.G.local_independencies('e'), Independencies(['e', ['c', 'b', 'a'], 'd']))
        self.assertEqual(self.G.local_independencies('b'), Independencies(['b', 'a']))
        self.assertEqual(self.G1.local_independencies('grade'), Independencies())

    def test_get_independencies(self):
        chain = BayesianModel([('X', 'Y'), ('Y', 'Z')])
        self.assertEqual(chain.get_independencies(), Independencies(('X', 'Z', 'Y'), ('Z', 'X', 'Y')))
        fork = BayesianModel([('Y', 'X'), ('Y', 'Z')])
        self.assertEqual(fork.get_independencies(), Independencies(('X', 'Z', 'Y'), ('Z', 'X', 'Y')))
        collider = BayesianModel([('X', 'Y'), ('Z', 'Y')])
        self.assertEqual(collider.get_independencies(), Independencies(('X', 'Z'), ('Z', 'X')))

    def test_is_imap(self):
        val = [0.01, 0.01, 0.08, 0.006, 0.006, 0.048, 0.004, 0.004, 0.032,
               0.04, 0.04, 0.32, 0.024, 0.024, 0.192, 0.016, 0.016, 0.128]
        JPD = JointProbabilityDistribution(['diff', 'intel', 'grade'], [2, 3, 3], val)
        fac = DiscreteFactor(['diff', 'intel', 'grade'], [2, 3, 3], val)
        self.assertTrue(self.G1.is_imap(JPD))
        self.assertRaises(TypeError, self.G1.is_imap, fac)

    def test_get_immoralities(self):
        G = BayesianModel([('x', 'y'), ('z', 'y'), ('x', 'z'), ('w', 'y')])
        self.assertEqual(G.get_immoralities(), {('w', 'x'), ('w', 'z')})
        G1 = BayesianModel([('x', 'y'), ('z', 'y'), ('z', 'x'), ('w', 'y')])
        self.assertEqual(G1.get_immoralities(), {('w', 'x'), ('w', 'z')})
        G2 = BayesianModel([('x', 'y'), ('z', 'y'), ('x', 'z'), ('w', 'y'), ('w', 'x')])
        self.assertEqual(G2.get_immoralities(), {('w', 'z')})

    def test_is_iequivalent(self):
        G = BayesianModel([('x', 'y'), ('z', 'y'), ('x', 'z'), ('w', 'y')])
        self.assertRaises(TypeError, G.is_iequivalent, MarkovModel())
        G1 = BayesianModel([('V', 'W'), ('W', 'X'), ('X', 'Y'), ('Z', 'Y')])
        G2 = BayesianModel([('W', 'V'), ('X', 'W'), ('X', 'Y'), ('Z', 'Y')])
        self.assertTrue(G1.is_iequivalent(G2))
        G3 = BayesianModel([('W', 'V'), ('W', 'X'), ('Y', 'X'), ('Z', 'Y')])
        self.assertFalse(G3.is_iequivalent(G2))

    def test_copy(self):
        model_copy = self.G1.copy()
        self.assertEqual(sorted(self.G1.nodes()), sorted(model_copy.nodes()))
        self.assertEqual(sorted(self.G1.edges()), sorted(model_copy.edges()))
        self.assertNotEqual(id(self.G1.get_cpds('diff')),
                            id(model_copy.get_cpds('diff')))

        self.G1.remove_cpds('diff')
        diff_cpd = TabularCPD('diff', 2, values=[[0.3], [0.7]])
        self.G1.add_cpds(diff_cpd)
        self.assertNotEqual(self.G1.get_cpds('diff'),
                            model_copy.get_cpds('diff'))

        self.G1.remove_node('intel')
        self.assertNotEqual(sorted(self.G1.nodes()), sorted(model_copy.nodes()))
        self.assertNotEqual(sorted(self.G1.edges()), sorted(model_copy.edges()))

    def test_remove_node(self):
#.........这里部分代码省略.........
开发者ID:MariosRichards,项目名称:BES_analysis_code,代码行数:103,代码来源:test_BayesianModel.py


注:本文中的pgmpy.models.BayesianModel.remove_cpds方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。