当前位置: 首页>>代码示例>>Python>>正文


Python BayesianModel.node[var]方法代码示例

本文整理汇总了Python中pgmpy.models.BayesianModel.node[var]方法的典型用法代码示例。如果您正苦于以下问题:Python BayesianModel.node[var]方法的具体用法?Python BayesianModel.node[var]怎么用?Python BayesianModel.node[var]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pgmpy.models.BayesianModel的用法示例。


在下文中一共展示了BayesianModel.node[var]方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setUp

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import node[var] [as 别名]
    def setUp(self):
        nodes = {'c': {'STATES': ['Present', 'Absent'],
                       'DESCRIPTION': '(c) Brain Tumor',
                       'YPOS': '11935',
                       'XPOS': '15250',
                       'TYPE': 'discrete'},
                 'a': {'STATES': ['Present', 'Absent'],
                       'DESCRIPTION': '(a) Metastatic Cancer',
                       'YPOS': '10465',
                       'XPOS': '13495',
                       'TYPE': 'discrete'},
                 'b': {'STATES': ['Present', 'Absent'],
                       'DESCRIPTION': '(b) Serum Calcium Increase',
                       'YPOS': '11965',
                       'XPOS': '11290',
                       'TYPE': 'discrete'},
                 'e': {'STATES': ['Present', 'Absent'],
                       'DESCRIPTION': '(e) Papilledema',
                       'YPOS': '13240',
                       'XPOS': '17305',
                       'TYPE': 'discrete'},
                 'd': {'STATES': ['Present', 'Absent'],
                       'DESCRIPTION': '(d) Coma',
                       'YPOS': '12985',
                       'XPOS': '13960',
                       'TYPE': 'discrete'}}
        model = BayesianModel([('b', 'd'), ('a', 'b'), ('a', 'c'), ('c', 'd'), ('c', 'e')])
        cpd_distribution = {'a': {'TYPE': 'discrete', 'DPIS': np.array([[0.2, 0.8]])},
                            'e': {'TYPE': 'discrete', 'DPIS': np.array([[0.8, 0.2],
                                                                        [0.6, 0.4]]), 'CONDSET': ['c'], 'CARDINALITY': [2]},
                            'b': {'TYPE': 'discrete', 'DPIS': np.array([[0.8, 0.2],
                                                                        [0.2, 0.8]]), 'CONDSET': ['a'], 'CARDINALITY': [2]},
                            'c': {'TYPE': 'discrete', 'DPIS': np.array([[0.2, 0.8],
                                                                        [0.05, 0.95]]), 'CONDSET': ['a'], 'CARDINALITY': [2]},
                            'd': {'TYPE': 'discrete', 'DPIS': np.array([[0.8, 0.2],
                                                                        [0.9, 0.1],
                                                                        [0.7, 0.3],
                                                                        [0.05, 0.95]]), 'CONDSET': ['b', 'c'], 'CARDINALITY': [2, 2]}}

        tabular_cpds = []
        for var, values in cpd_distribution.items():
            evidence = values['CONDSET'] if 'CONDSET' in values else []
            cpd = values['DPIS']
            evidence_card = values['CARDINALITY'] if 'CARDINALITY' in values else []
            states = nodes[var]['STATES']
            cpd = TabularCPD(var, len(states), cpd,
                             evidence=evidence,
                             evidence_card=evidence_card)
            tabular_cpds.append(cpd)
        model.add_cpds(*tabular_cpds)

        for var, properties in nodes.items():
            model.node[var] = properties

        self.maxDiff = None
        self.writer = XMLBeliefNetwork.XBNWriter(model=model)
开发者ID:ankurankan,项目名称:pgmpy,代码行数:58,代码来源:test_XMLBeliefNetwork.py

示例2: get_model

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import node[var] [as 别名]
    def get_model(self):
        """
        Returns an instance of Bayesian Model.
        """
        model = BayesianModel(self.edges)
        model.name = self.model_name

        tabular_cpds = []
        for var, values in self.variable_CPD.items():
            evidence = values['CONDSET'] if 'CONDSET' in values else []
            cpd = values['DPIS']
            evidence_card = values['CARDINALITY'] if 'CARDINALITY' in values else []
            states = self.variables[var]['STATES']
            cpd = TabularCPD(var, len(states), cpd,
                             evidence=evidence,
                             evidence_card=evidence_card)
            tabular_cpds.append(cpd)

        model.add_cpds(*tabular_cpds)

        for var, properties in self.variables.items():
            model.node[var] = properties

        return model
开发者ID:ankurankan,项目名称:pgmpy,代码行数:26,代码来源:XMLBeliefNetwork.py


注:本文中的pgmpy.models.BayesianModel.node[var]方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。