当前位置: 首页>>代码示例>>Python>>正文


Python BayesianModel.add_cpds方法代码示例

本文整理汇总了Python中pgmpy.models.BayesianModel.add_cpds方法的典型用法代码示例。如果您正苦于以下问题:Python BayesianModel.add_cpds方法的具体用法?Python BayesianModel.add_cpds怎么用?Python BayesianModel.add_cpds使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pgmpy.models.BayesianModel的用法示例。


在下文中一共展示了BayesianModel.add_cpds方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setUp

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
    def setUp(self):
        self.sn2 = {'grade': ['A', 'B', 'F'], 'diff': ['high', 'low'],
                    'intel': ['poor', 'good', 'very good']}
        self.sn1 = {'speed': ['low', 'medium', 'high'],
                    'switch': ['on', 'off'], 'time': ['day', 'night']}

        self.phi1 = DiscreteFactor(['speed', 'switch', 'time'],
                                   [3, 2, 2], np.ones(12))
        self.phi2 = DiscreteFactor(['speed', 'switch', 'time'],
                                   [3, 2, 2], np.ones(12), state_names=self.sn1)

        self.cpd1 = TabularCPD('grade', 3, [[0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
                                            [0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
                                            [0.8, 0.8, 0.8, 0.8, 0.8, 0.8]],
                               evidence=['diff', 'intel'],
                               evidence_card=[2, 3])
        self.cpd2 = TabularCPD('grade', 3, [[0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
                                            [0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
                                            [0.8, 0.8, 0.8, 0.8, 0.8, 0.8]],
                               evidence=['diff', 'intel'],
                               evidence_card=[2, 3],
                               state_names=self.sn2)

        student = BayesianModel([('diff', 'grade'), ('intel', 'grade')])
        diff_cpd = TabularCPD('diff', 2, [[0.2, 0.8]])
        intel_cpd = TabularCPD('intel', 2, [[0.3, 0.7]])
        grade_cpd = TabularCPD('grade', 3, [[0.1, 0.1, 0.1, 0.1],
                                            [0.1, 0.1, 0.1, 0.1],
                                            [0.8, 0.8, 0.8, 0.8]],
                               evidence=['diff', 'intel'],
                               evidence_card=[2, 2])
        student.add_cpds(diff_cpd, intel_cpd, grade_cpd)
        self.model1 = Inference(student)
        self.model2 = Inference(student, state_names=self.sn2)
开发者ID:MariosRichards,项目名称:BES_analysis_code,代码行数:36,代码来源:test_state_name.py

示例2: get_model

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
    def get_model(self):
        """
        Returns the fitted bayesian model

        Example
        ----------
        >>> from pgmpy.readwrite import BIFReader
        >>> reader = BIFReader("bif_test.bif")
        >>> reader.get_model()
        <pgmpy.models.BayesianModel.BayesianModel object at 0x7f20af154320>
        """
        try:
            model = BayesianModel(self.variable_edges)
            model.name = self.network_name
            model.add_nodes_from(self.variable_names)

            tabular_cpds = []
            for var in sorted(self.variable_cpds.keys()):
                values = self.variable_cpds[var]
                cpd = TabularCPD(var, len(self.variable_states[var]), values,
                                 evidence=self.variable_parents[var],
                                 evidence_card=[len(self.variable_states[evidence_var])
                                                for evidence_var in self.variable_parents[var]])
                tabular_cpds.append(cpd)

            model.add_cpds(*tabular_cpds)
            for node, properties in self.variable_properties.items():
                for prop in properties:
                    prop_name, prop_value = map(lambda t: t.strip(), prop.split('='))
                    model.node[node][prop_name] = prop_value

            return model

        except AttributeError:
            raise AttributeError('First get states of variables, edges, parents and network name')
开发者ID:MariosRichards,项目名称:BES_analysis_code,代码行数:37,代码来源:BIF.py

示例3: main

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
def main():
    # Defining the network structure
    model = BayesianModel([('C', 'H'), ('P', 'H')])

    # H: host
    # P: prize
    # C: contestant

    # Defining the CPDs:
    cpd_c = TabularCPD('C', 3, [[0.33, 0.33, 0.33]])
    cpd_p = TabularCPD('P', 3, [[0.33, 0.33, 0.33]])
    cpd_h = TabularCPD('H', 3, [[0.0, 0.0, 0.0, 0.0, 0.5, 1.0, 0.0, 1.0, 0.5],
                                [0.5, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.5],
                                [0.5, 1.0, 0.0, 1.0, 0.5, 0.0, 0.0, 0.0, 0.0]],
                       evidence=['C', 'P'], evidence_card=[3, 3])

    # Associating the CPDs with the network structure.
    model.add_cpds(cpd_c, cpd_p, cpd_h)

    # Some other methods
    # model.get_cpds()

    # check_model check for the model structure and the associated CPD and
    # returns True if everything is correct otherwise throws an exception
    # print model.check_model()

    # Infering the posterior probability
    infer = VariableElimination(model)
    posterior_p = infer.query(['H'], evidence={'C': 0, 'P': 0})
    print(posterior_p['H'])
开发者ID:henryzord,项目名称:forrestTemp,代码行数:32,代码来源:__init__.py

示例4: setUp

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
    def setUp(self):
        nodes = {'c': {'STATES': ['Present', 'Absent'],
                       'DESCRIPTION': '(c) Brain Tumor',
                       'YPOS': '11935',
                       'XPOS': '15250',
                       'TYPE': 'discrete'},
                 'a': {'STATES': ['Present', 'Absent'],
                       'DESCRIPTION': '(a) Metastatic Cancer',
                       'YPOS': '10465',
                       'XPOS': '13495',
                       'TYPE': 'discrete'},
                 'b': {'STATES': ['Present', 'Absent'],
                       'DESCRIPTION': '(b) Serum Calcium Increase',
                       'YPOS': '11965',
                       'XPOS': '11290',
                       'TYPE': 'discrete'},
                 'e': {'STATES': ['Present', 'Absent'],
                       'DESCRIPTION': '(e) Papilledema',
                       'YPOS': '13240',
                       'XPOS': '17305',
                       'TYPE': 'discrete'},
                 'd': {'STATES': ['Present', 'Absent'],
                       'DESCRIPTION': '(d) Coma',
                       'YPOS': '12985',
                       'XPOS': '13960',
                       'TYPE': 'discrete'}}
        model = BayesianModel([('b', 'd'), ('a', 'b'), ('a', 'c'), ('c', 'd'), ('c', 'e')])
        cpd_distribution = {'a': {'TYPE': 'discrete', 'DPIS': np.array([[0.2, 0.8]])},
                            'e': {'TYPE': 'discrete', 'DPIS': np.array([[0.8, 0.2],
                                                                        [0.6, 0.4]]), 'CONDSET': ['c'], 'CARDINALITY': [2]},
                            'b': {'TYPE': 'discrete', 'DPIS': np.array([[0.8, 0.2],
                                                                        [0.2, 0.8]]), 'CONDSET': ['a'], 'CARDINALITY': [2]},
                            'c': {'TYPE': 'discrete', 'DPIS': np.array([[0.2, 0.8],
                                                                        [0.05, 0.95]]), 'CONDSET': ['a'], 'CARDINALITY': [2]},
                            'd': {'TYPE': 'discrete', 'DPIS': np.array([[0.8, 0.2],
                                                                        [0.9, 0.1],
                                                                        [0.7, 0.3],
                                                                        [0.05, 0.95]]), 'CONDSET': ['b', 'c'], 'CARDINALITY': [2, 2]}}

        tabular_cpds = []
        for var, values in cpd_distribution.items():
            evidence = values['CONDSET'] if 'CONDSET' in values else []
            cpd = values['DPIS']
            evidence_card = values['CARDINALITY'] if 'CARDINALITY' in values else []
            states = nodes[var]['STATES']
            cpd = TabularCPD(var, len(states), cpd,
                             evidence=evidence,
                             evidence_card=evidence_card)
            tabular_cpds.append(cpd)
        model.add_cpds(*tabular_cpds)

        for var, properties in nodes.items():
            model.node[var] = properties

        self.maxDiff = None
        self.writer = XMLBeliefNetwork.XBNWriter(model=model)
开发者ID:ankurankan,项目名称:pgmpy,代码行数:58,代码来源:test_XMLBeliefNetwork.py

示例5: bayesnet_examples

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
def bayesnet_examples():
    from pgmpy.factors import TabularCPD
    from pgmpy.models import BayesianModel
    import pandas as pd

    student_model = BayesianModel([('D', 'G'),
                                   ('I', 'G'),
                                   ('G', 'L'),
                                   ('I', 'S')])
    # we can generate some random data.
    raw_data = np.random.randint(low=0, high=2, size=(1000, 5))
    data = pd.DataFrame(raw_data, columns=['D', 'I', 'G', 'L', 'S'])
    data_train = data[: int(data.shape[0] * 0.75)]
    student_model.fit(data_train)
    student_model.get_cpds()

    data_test = data[int(0.75 * data.shape[0]): data.shape[0]]
    data_test.drop('D', axis=1, inplace=True)
    student_model.predict(data_test)

    grade_cpd = TabularCPD(
        variable='G',
        variable_card=3,
        values=[[0.3, 0.05, 0.9, 0.5],
                [0.4, 0.25, 0.08, 0.3],
                [0.3, 0.7, 0.02, 0.2]],
        evidence=['I', 'D'],
        evidence_card=[2, 2])
    difficulty_cpd = TabularCPD(
        variable='D',
        variable_card=2,
        values=[[0.6, 0.4]])
    intel_cpd = TabularCPD(
        variable='I',
        variable_card=2,
        values=[[0.7, 0.3]])
    letter_cpd = TabularCPD(
        variable='L',
        variable_card=2,
        values=[[0.1, 0.4, 0.99],
                [0.9, 0.6, 0.01]],
        evidence=['G'],
        evidence_card=[3])
    sat_cpd = TabularCPD(
        variable='S',
        variable_card=2,
        values=[[0.95, 0.2],
                [0.05, 0.8]],
        evidence=['I'],
        evidence_card=[2])
    student_model.add_cpds(grade_cpd, difficulty_cpd,
                           intel_cpd, letter_cpd,
                           sat_cpd)
开发者ID:Erotemic,项目名称:utool,代码行数:55,代码来源:oldalg.py

示例6: get_model

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
    def get_model(self):
        """
        Returns an instance of Bayesian Model or Markov Model.
        Varibles are in the pattern var_0, var_1, var_2 where var_0 is
        0th index variable, var_1 is 1st index variable.

        Return
        ------
        model: an instance of Bayesian or Markov Model.

        Examples
        --------
        >>> reader = UAIReader('TestUAI.uai')
        >>> reader.get_model()
        """
        if self.network_type == 'BAYES':
            model = BayesianModel(self.edges)

            tabular_cpds = []
            for cpd in self.tables:
                child_var = cpd[0]
                states = int(self.domain[child_var])
                arr = list(map(float, cpd[1]))
                values = np.array(arr)
                values = values.reshape(states, values.size // states)
                tabular_cpds.append(TabularCPD(child_var, states, values))

            model.add_cpds(*tabular_cpds)
            return model

        elif self.network_type == 'MARKOV':
            model = MarkovModel(self.edges)

            factors = []
            for table in self.tables:
                variables = table[0]
                cardinality = [int(self.domain[var]) for var in variables]
                value = list(map(float, table[1]))
                factor = DiscreteFactor(variables=variables, cardinality=cardinality, values=value)
                factors.append(factor)

            model.add_factors(*factors)
            return model
开发者ID:MariosRichards,项目名称:BES_analysis_code,代码行数:45,代码来源:UAI.py

示例7: get_model

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
    def get_model(self):
        """
        Returns the model instance of the ProbModel.

        Return
        ---------------
        model: an instance of BayesianModel.

        Examples
        -------
        >>> reader = ProbModelXMLReader()
        >>> reader.get_model()
        """
        if self.probnet.get('type') == "BayesianNetwork":
            model = BayesianModel(self.probnet['edges'].keys())

            tabular_cpds = []
            cpds = self.probnet['Potentials']
            for cpd in cpds:
                var = list(cpd['Variables'].keys())[0]
                states = self.probnet['Variables'][var]['States']
                evidence = cpd['Variables'][var]
                evidence_card = [len(self.probnet['Variables'][evidence_var]['States'])
                                 for evidence_var in evidence]
                arr = list(map(float, cpd['Values'].split()))
                values = np.array(arr)
                values = values.reshape((len(states), values.size//len(states)))
                tabular_cpds.append(TabularCPD(var, len(states), values, evidence, evidence_card))

            model.add_cpds(*tabular_cpds)

            variables = model.nodes()
            for var in variables:
                for prop_name, prop_value in self.probnet['Variables'][var].items():
                    model.node[var][prop_name] = prop_value

            edges = model.edges()
            for edge in edges:
                for prop_name, prop_value in self.probnet['edges'][edge].items():
                    model.edge[edge[0]][edge[1]][prop_name] = prop_value
            return model
        else:
            raise ValueError("Please specify only Bayesian Network.")
开发者ID:Sayan-Paul,项目名称:kod,代码行数:45,代码来源:ProbModelXML.py

示例8: get_model

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
    def get_model(self):
        model = BayesianModel(self.get_edges())
        model.name = self.network_name

        tabular_cpds = []
        for var, values in self.variable_CPD.items():
            cpd = TabularCPD(var, len(self.variable_states[var]), values,
                             evidence=self.variable_parents[var],
                             evidence_card=[len(self.variable_states[evidence_var])
                                            for evidence_var in self.variable_parents[var]])
            tabular_cpds.append(cpd)

        model.add_cpds(*tabular_cpds)

        for node, properties in self.variable_property.items():
            for prop in properties:
                prop_name, prop_value = map(lambda t: t.strip(), prop.split('='))
                model.node[node][prop_name] = prop_value

        return model
开发者ID:ankurankan,项目名称:pgmpy,代码行数:22,代码来源:XMLBIF.py

示例9: get_model

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
    def get_model(self):
        """
        Returns an instance of Bayesian Model.
        """
        model = BayesianModel(self.edges)
        model.name = self.model_name

        tabular_cpds = []
        for var, values in self.variable_CPD.items():
            evidence = values['CONDSET'] if 'CONDSET' in values else []
            cpd = values['DPIS']
            evidence_card = values['CARDINALITY'] if 'CARDINALITY' in values else []
            states = self.variables[var]['STATES']
            cpd = TabularCPD(var, len(states), cpd,
                             evidence=evidence,
                             evidence_card=evidence_card)
            tabular_cpds.append(cpd)

        model.add_cpds(*tabular_cpds)

        for var, properties in self.variables.items():
            model.node[var] = properties

        return model
开发者ID:ankurankan,项目名称:pgmpy,代码行数:26,代码来源:XMLBeliefNetwork.py

示例10: TestGibbsSampling

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
class TestGibbsSampling(unittest.TestCase):
    def setUp(self):
        # A test Bayesian model
        diff_cpd = TabularCPD('diff', 2, [[0.6], [0.4]])
        intel_cpd = TabularCPD('intel', 2, [[0.7], [0.3]])
        grade_cpd = TabularCPD('grade', 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, 0.08, 0.3], [0.3, 0.7, 0.02, 0.2]],
                               evidence=['diff', 'intel'], evidence_card=[2, 2])
        self.bayesian_model = BayesianModel()
        self.bayesian_model.add_nodes_from(['diff', 'intel', 'grade'])
        self.bayesian_model.add_edges_from([('diff', 'grade'), ('intel', 'grade')])
        self.bayesian_model.add_cpds(diff_cpd, intel_cpd, grade_cpd)

        # A test Markov model
        self.markov_model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')])
        factor_ab = Factor(['A', 'B'], [2, 3], [1, 2, 3, 4, 5, 6])
        factor_cb = Factor(['C', 'B'], [4, 3], [3, 1, 4, 5, 7, 8, 1, 3, 10, 4, 5, 6])
        factor_bd = Factor(['B', 'D'], [3, 2], [5, 7, 2, 1, 9, 3])
        self.markov_model.add_factors(factor_ab, factor_cb, factor_bd)

        self.gibbs = GibbsSampling(self.bayesian_model)

    def tearDown(self):
        del self.bayesian_model
        del self.markov_model

    @patch('pgmpy.inference.Sampling.GibbsSampling._get_kernel_from_bayesian_model', autospec=True)
    @patch('pgmpy.models.MarkovChain.__init__', autospec=True)
    def test_init_bayesian_model(self, init, get_kernel):
        model = MagicMock(spec_set=BayesianModel)
        gibbs = GibbsSampling(model)
        init.assert_called_once_with(gibbs)
        get_kernel.assert_called_once_with(gibbs, model)

    @patch('pgmpy.inference.Sampling.GibbsSampling._get_kernel_from_markov_model', autospec=True)
    def test_init_markov_model(self, get_kernel):
        model = MagicMock(spec_set=MarkovModel)
        gibbs = GibbsSampling(model)
        get_kernel.assert_called_once_with(gibbs, model)

    def test_get_kernel_from_bayesian_model(self):
        gibbs = GibbsSampling()
        gibbs._get_kernel_from_bayesian_model(self.bayesian_model)
        self.assertListEqual(list(gibbs.variables), self.bayesian_model.nodes())
        self.assertDictEqual(gibbs.cardinalities, {'diff': 2, 'intel': 2, 'grade': 3})

    def test_get_kernel_from_markov_model(self):
        gibbs = GibbsSampling()
        gibbs._get_kernel_from_markov_model(self.markov_model)
        self.assertListEqual(list(gibbs.variables), self.markov_model.nodes())
        self.assertDictEqual(gibbs.cardinalities, {'A': 2, 'B': 3, 'C': 4, 'D': 2})

    def test_sample(self):
        start_state = [State('diff', 0), State('intel', 0), State('grade', 0)]
        sample = self.gibbs.sample(start_state, 2)
        self.assertEquals(len(sample), 2)
        self.assertEquals(len(sample.columns), 3)
        self.assertIn('diff', sample.columns)
        self.assertIn('intel', sample.columns)
        self.assertIn('grade', sample.columns)
        self.assertTrue(set(sample['diff']).issubset({0, 1}))
        self.assertTrue(set(sample['intel']).issubset({0, 1}))
        self.assertTrue(set(sample['grade']).issubset({0, 1, 2}))


    @patch("pgmpy.inference.Sampling.GibbsSampling.random_state", autospec=True)
    def test_sample_less_arg(self, random_state):
        self.gibbs.state = None
        random_state.return_value = [State('diff', 0), State('intel', 0), State('grade', 0)]
        sample = self.gibbs.sample(size=2)
        random_state.assert_called_once_with(self.gibbs)
        self.assertEqual(len(sample), 2)


    def test_generate_sample(self):
        start_state = [State('diff', 0), State('intel', 0), State('grade', 0)]
        gen = self.gibbs.generate_sample(start_state, 2)
        samples = [sample for sample in gen]
        self.assertEqual(len(samples), 2)
        self.assertEqual({samples[0][0].var, samples[0][1].var, samples[0][2].var}, {'diff', 'intel', 'grade'})
        self.assertEqual({samples[1][0].var, samples[1][1].var, samples[1][2].var}, {'diff', 'intel', 'grade'})


    @patch("pgmpy.inference.Sampling.GibbsSampling.random_state", autospec=True)
    def test_generate_sample_less_arg(self, random_state):
        self.gibbs.state = None
        gen = self.gibbs.generate_sample(size=2)
        samples = [sample for sample in gen]
        random_state.assert_called_once_with(self.gibbs)
        self.assertEqual(len(samples), 2)
开发者ID:ankurankan,项目名称:pgmpy,代码行数:91,代码来源:test_Sampling.py

示例11: TestBayesianModelMethods

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
class TestBayesianModelMethods(unittest.TestCase):

    def setUp(self):
        self.G = BayesianModel([('a', 'd'), ('b', 'd'),
                                ('d', 'e'), ('b', 'c')])
        self.G1 = BayesianModel([('diff', 'grade'), ('intel', 'grade')])
        diff_cpd = TabularCPD('diff', 2, values=[[0.2], [0.8]])
        intel_cpd = TabularCPD('intel', 3, values=[[0.5], [0.3], [0.2]])
        grade_cpd = TabularCPD('grade', 3, values=[[0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
                                                   [0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
                                                   [0.8, 0.8, 0.8, 0.8, 0.8, 0.8]],
                               evidence=['diff', 'intel'], evidence_card=[2, 3])
        self.G1.add_cpds(diff_cpd, intel_cpd, grade_cpd)
        self.G2 = BayesianModel([('d', 'g'), ('g', 'l'), ('i', 'g'), ('i', 'l')])

    def test_moral_graph(self):
        moral_graph = self.G.moralize()
        self.assertListEqual(sorted(moral_graph.nodes()), ['a', 'b', 'c', 'd', 'e'])
        for edge in moral_graph.edges():
            self.assertTrue(edge in [('a', 'b'), ('a', 'd'), ('b', 'c'), ('d', 'b'), ('e', 'd')] or
                            (edge[1], edge[0]) in [('a', 'b'), ('a', 'd'), ('b', 'c'), ('d', 'b'), ('e', 'd')])

    def test_moral_graph_with_edge_present_over_parents(self):
        G = BayesianModel([('a', 'd'), ('d', 'e'), ('b', 'd'), ('b', 'c'), ('a', 'b')])
        moral_graph = G.moralize()
        self.assertListEqual(sorted(moral_graph.nodes()), ['a', 'b', 'c', 'd', 'e'])
        for edge in moral_graph.edges():
            self.assertTrue(edge in [('a', 'b'), ('c', 'b'), ('d', 'a'), ('d', 'b'), ('d', 'e')] or
                            (edge[1], edge[0]) in [('a', 'b'), ('c', 'b'), ('d', 'a'), ('d', 'b'), ('d', 'e')])

    def test_get_ancestors_of_success(self):
        ancenstors1 = self.G2._get_ancestors_of('g')
        ancenstors2 = self.G2._get_ancestors_of('d')
        ancenstors3 = self.G2._get_ancestors_of(['i', 'l'])
        self.assertEqual(ancenstors1, {'d', 'i', 'g'})
        self.assertEqual(ancenstors2, {'d'})
        self.assertEqual(ancenstors3, {'g', 'i', 'l', 'd'})

    def test_get_ancestors_of_failure(self):
        self.assertRaises(ValueError, self.G2._get_ancestors_of, 'h')

    def test_local_independencies(self):
        self.assertEqual(self.G.local_independencies('a'), Independencies(['a', ['b', 'c']]))
        self.assertEqual(self.G.local_independencies('c'), Independencies(['c', ['a', 'd', 'e'], 'b']))
        self.assertEqual(self.G.local_independencies('d'), Independencies(['d', 'c', ['b', 'a']]))
        self.assertEqual(self.G.local_independencies('e'), Independencies(['e', ['c', 'b', 'a'], 'd']))
        self.assertEqual(self.G.local_independencies('b'), Independencies(['b', 'a']))
        self.assertEqual(self.G1.local_independencies('grade'), Independencies())

    def test_get_independencies(self):
        chain = BayesianModel([('X', 'Y'), ('Y', 'Z')])
        self.assertEqual(chain.get_independencies(), Independencies(('X', 'Z', 'Y'), ('Z', 'X', 'Y')))
        fork = BayesianModel([('Y', 'X'), ('Y', 'Z')])
        self.assertEqual(fork.get_independencies(), Independencies(('X', 'Z', 'Y'), ('Z', 'X', 'Y')))
        collider = BayesianModel([('X', 'Y'), ('Z', 'Y')])
        self.assertEqual(collider.get_independencies(), Independencies(('X', 'Z'), ('Z', 'X')))

    def test_is_imap(self):
        val = [0.01, 0.01, 0.08, 0.006, 0.006, 0.048, 0.004, 0.004, 0.032,
               0.04, 0.04, 0.32, 0.024, 0.024, 0.192, 0.016, 0.016, 0.128]
        JPD = JointProbabilityDistribution(['diff', 'intel', 'grade'], [2, 3, 3], val)
        fac = DiscreteFactor(['diff', 'intel', 'grade'], [2, 3, 3], val)
        self.assertTrue(self.G1.is_imap(JPD))
        self.assertRaises(TypeError, self.G1.is_imap, fac)

    def test_get_immoralities(self):
        G = BayesianModel([('x', 'y'), ('z', 'y'), ('x', 'z'), ('w', 'y')])
        self.assertEqual(G.get_immoralities(), {('w', 'x'), ('w', 'z')})
        G1 = BayesianModel([('x', 'y'), ('z', 'y'), ('z', 'x'), ('w', 'y')])
        self.assertEqual(G1.get_immoralities(), {('w', 'x'), ('w', 'z')})
        G2 = BayesianModel([('x', 'y'), ('z', 'y'), ('x', 'z'), ('w', 'y'), ('w', 'x')])
        self.assertEqual(G2.get_immoralities(), {('w', 'z')})

    def test_is_iequivalent(self):
        G = BayesianModel([('x', 'y'), ('z', 'y'), ('x', 'z'), ('w', 'y')])
        self.assertRaises(TypeError, G.is_iequivalent, MarkovModel())
        G1 = BayesianModel([('V', 'W'), ('W', 'X'), ('X', 'Y'), ('Z', 'Y')])
        G2 = BayesianModel([('W', 'V'), ('X', 'W'), ('X', 'Y'), ('Z', 'Y')])
        self.assertTrue(G1.is_iequivalent(G2))
        G3 = BayesianModel([('W', 'V'), ('W', 'X'), ('Y', 'X'), ('Z', 'Y')])
        self.assertFalse(G3.is_iequivalent(G2))

    def test_copy(self):
        model_copy = self.G1.copy()
        self.assertEqual(sorted(self.G1.nodes()), sorted(model_copy.nodes()))
        self.assertEqual(sorted(self.G1.edges()), sorted(model_copy.edges()))
        self.assertNotEqual(id(self.G1.get_cpds('diff')),
                            id(model_copy.get_cpds('diff')))

        self.G1.remove_cpds('diff')
        diff_cpd = TabularCPD('diff', 2, values=[[0.3], [0.7]])
        self.G1.add_cpds(diff_cpd)
        self.assertNotEqual(self.G1.get_cpds('diff'),
                            model_copy.get_cpds('diff'))

        self.G1.remove_node('intel')
        self.assertNotEqual(sorted(self.G1.nodes()), sorted(model_copy.nodes()))
        self.assertNotEqual(sorted(self.G1.edges()), sorted(model_copy.edges()))

    def test_remove_node(self):
#.........这里部分代码省略.........
开发者ID:MariosRichards,项目名称:BES_analysis_code,代码行数:103,代码来源:test_BayesianModel.py

示例12: bayesnet

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]

#.........这里部分代码省略.........
                    evidence_card=[num_same_diff])  # [::-1])
                cpd.semtype = 'score'
                return cpd

        score_cpds = [score_cpd('i', 'j'), score_cpd('j', 'k')]
        cpd_list = name_cpds + score_cpds + samediff_cpds
    else:
        score_measure = np.array([get_expected_scores_prob(level1, level2)
                                  for level1, level2 in
                                  zip(np.linspace(.1, .9, num_scores),
                                      np.linspace(.2, .8, num_scores))])

        score_values = (score_measure / score_measure.sum(axis=0)).tolist()

        def score_cpd(aid1, aid2):
            cpd = TabularCPD(
                variable='S' + aid1 + aid2,
                variable_card=num_scores,
                values=score_values,
                evidence=['N' + aid1, 'N' + aid2],
                evidence_card=[num_names, num_names])
            cpd.semtype = 'score'
            return cpd
        score_cpds = [score_cpd('i', 'j'), score_cpd('j', 'k')]
        cpd_list = name_cpds + score_cpds
        pass

    input_graph = []
    for cpd in cpd_list:
        if cpd.evidence is not None:
            for evar in cpd.evidence:
                input_graph.append((evar, cpd.variable))
    name_model = BayesianModel(input_graph)
    name_model.add_cpds(*cpd_list)

    var2_cpd.update(dict(zip([cpd.variable for cpd in cpd_list], cpd_list)))
    globals()['var2_cpd'] = var2_cpd

    varnames = [cpd.variable for cpd in cpd_list]

    # --- PRINT CPDS ---

    cpd = score_cpds[0]
    def print_cpd(cpd):
        print('CPT: %r' % (cpd,))
        index = semtype2_nice[cpd.semtype]
        if cpd.evidence is None:
            columns = ['None']
        else:
            basis_lists = [semtype2_nice[var2_cpd[ename].semtype] for ename in cpd.evidence]
            columns = [','.join(x) for x in ut.iprod(*basis_lists)]
        data = cpd.get_cpd()
        print(pd.DataFrame(data, index=index, columns=columns))

    for cpd in name_model.get_cpds():
        print('----')
        print(cpd._str('phi'))
        print_cpd(cpd)

    # --- INFERENCE ---

    Ni = name_cpds[0]

    event_space_combos = {}
    event_space_combos[Ni.variable] = 0  # Set ni to always be Fred
    for cpd in cpd_list:
开发者ID:Erotemic,项目名称:utool,代码行数:70,代码来源:oldalg.py

示例13: TestXMLBIFWriterMethodsString

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
class TestXMLBIFWriterMethodsString(unittest.TestCase):
    def setUp(self):
        edges = [
            ["family-out", "dog-out"],
            ["bowel-problem", "dog-out"],
            ["family-out", "light-on"],
            ["dog-out", "hear-bark"],
        ]
        cpds = {
            "bowel-problem": np.array([[0.01], [0.99]]),
            "dog-out": np.array([[0.99, 0.01, 0.97, 0.03], [0.9, 0.1, 0.3, 0.7]]),
            "family-out": np.array([[0.15], [0.85]]),
            "hear-bark": np.array([[0.7, 0.3], [0.01, 0.99]]),
            "light-on": np.array([[0.6, 0.4], [0.05, 0.95]]),
        }
        states = {
            "bowel-problem": ["true", "false"],
            "dog-out": ["true", "false"],
            "family-out": ["true", "false"],
            "hear-bark": ["true", "false"],
            "light-on": ["true", "false"],
        }
        parents = {
            "bowel-problem": [],
            "dog-out": ["family-out", "bowel-problem"],
            "family-out": [],
            "hear-bark": ["dog-out"],
            "light-on": ["family-out"],
        }
        properties = {
            "bowel-problem": ["position = (190, 69)"],
            "dog-out": ["position = (155, 165)"],
            "family-out": ["position = (112, 69)"],
            "hear-bark": ["position = (154, 241)"],
            "light-on": ["position = (73, 165)"],
        }

        self.model = BayesianModel(edges)

        tabular_cpds = []
        for var, values in cpds.items():
            cpd = TabularCPD(
                var,
                len(states[var]),
                values,
                evidence=parents[var],
                evidence_card=[len(states[evidence_var]) for evidence_var in parents[var]],
            )
            tabular_cpds.append(cpd)
        self.model.add_cpds(*tabular_cpds)

        for node, properties in properties.items():
            for prop in properties:
                prop_name, prop_value = map(lambda t: t.strip(), prop.split("="))
                self.model.node[node][prop_name] = prop_value

        self.writer = XMLBIFWriter(model=self.model)

    def test_file(self):
        self.expected_xml = etree.XML(
            """<BIF version="0.3">
  <NETWORK>
    <VARIABLE TYPE="nature">
      <NAME>bowel-problem</NAME>
      <OUTCOME>0</OUTCOME>
      <OUTCOME>1</OUTCOME>
      <PROPERTY>position = (190, 69)</PROPERTY>
    </VARIABLE>
    <VARIABLE TYPE="nature">
      <NAME>dog-out</NAME>
      <OUTCOME>0</OUTCOME>
      <OUTCOME>1</OUTCOME>
      <PROPERTY>position = (155, 165)</PROPERTY>
    </VARIABLE>
    <VARIABLE TYPE="nature">
      <NAME>family-out</NAME>
      <OUTCOME>0</OUTCOME>
      <OUTCOME>1</OUTCOME>
      <PROPERTY>position = (112, 69)</PROPERTY>
    </VARIABLE>
    <VARIABLE TYPE="nature">
      <NAME>hear-bark</NAME>
      <OUTCOME>0</OUTCOME>
      <OUTCOME>1</OUTCOME>
      <PROPERTY>position = (154, 241)</PROPERTY>
    </VARIABLE>
    <VARIABLE TYPE="nature">
      <NAME>light-on</NAME>
      <OUTCOME>0</OUTCOME>
      <OUTCOME>1</OUTCOME>
      <PROPERTY>position = (73, 165)</PROPERTY>
    </VARIABLE>
    <DEFINITION>
      <FOR>bowel-problem</FOR>
      <TABLE>0.01 0.99 </TABLE>
    </DEFINITION>
    <DEFINITION>
      <FOR>dog-out</FOR>
      <GIVEN>bowel-problem</GIVEN>
      <GIVEN>family-out</GIVEN>
#.........这里部分代码省略.........
开发者ID:melampyge,项目名称:kod,代码行数:103,代码来源:test_XMLBIF.py

示例14: configure

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]

#.........这里部分代码省略.........
            for k in range(len(modelDict[j]['pickleData']['original'])):
                print modelDict[j]['pickleData']['original'][k]
                if modelDict[j]['pickleData']['original'][k] not in modelDict[selfName]['labels']:
                    modelDict[j]['pickleData']['original'][k] = 'unknown'

        for j in modelList:
            if modelDict[j]['pickleData']['original'] != modelDict[selfName]['actualLabels']:
                failFlag = True
                print 'original classifications of', j, 'are not identical to those of', selfName

        if failFlag:
            return False

        # Update netStructureString to reflect changes in the modelList names
        strSections = netStructureString.split("'")
        for k in range(len(strSections)):
            if len(strSections[k]) > 2 and ',' not in strSections[k]:
                strSections[k] = strSections[k].split(' ')[0]
        netStructureString = "'".join(strSections)
        netStructure = ast.literal_eval(netStructureString)
        # ---------------------------------------------------------------------------------------------------------------
        # iterate through actual labels
        # for each actual label, iterate through models
        # for each model find classification label of this model for current actual label
        # get the index of the current classification and add it to its CPD
        # also calculate which item in the joint CPD needs to be incremented

        for j in range(len(modelDict[selfName]['actualLabels'])):
            currActualLabel = modelDict[selfName]['actualLabels'][j]
            row = modelDict[selfName]['labels'].index(currActualLabel)

            colVar = np.zeros([len(modelList)])
            for k in range(len(modelList)):
                cmod = modelList[k]
                if k != 0:
                    pmod = modelList[k-1]
                    colVar *= len(modelDict[pmod]['labels'])

                colVar[k] = modelDict[cmod]['labels'].index(
                                   modelDict[cmod]['pickleData']['results'][j])
                modelDict[cmod]['CPD'][0, colVar[k]] += 1

            col = sum(colVar)
            modelDict[selfName]['CPD'][row, col] += 1

        # take all CPD's and normalise the matrices
        evidenceCard = copy.deepcopy(modelList)
        for j in modelDict:
            if j == selfName:
                # this is a joint CPD matrix
                # normalise columns to have sum = 1
                modelDict[j]['CPD'] = normalize(modelDict[j]['CPD'], axis=0, norm='l1')
            else:
                # normalise sum of matrix = 1
                modelDict[j]['CPD'] /= np.sum(modelDict[j]['CPD'])
                evidenceCard[evidenceCard.index(j)] = len(modelDict[j]['labels'])
            print modelDict[j]['CPD']

        model = BayesianModel(netStructure)

        # create TabularCPD data structure to nest calculated CPD
        for j in modelDict:
            if j == selfName:
                modelDict[j]['cpdObject'] = TabularCPD(variable=j, variable_card=len(modelDict[j]['labels']),
                                                       values=modelDict[j]['CPD'],
                                                       evidence=modelList,
                                                       evidence_card=evidenceCard)
            else:
                modelDict[j]['cpdObject'] = TabularCPD(variable=j,
                                                       variable_card=len(modelDict[j]['labels']),
                                                       values=modelDict[j]['CPD'])

        # Associating the CPDs with the network
        for j in modelDict:
            model.add_cpds(modelDict[j]['cpdObject'])

        # check_model checks for the network structure and CPDs and verifies that the CPDs are correctly
        # defined and sum to 1.
        if not model.check_model():
            print 'Model check returned unsuccessful'
            return False

        infer = VariableElimination(model)
        confMatrix = np.zeros(len(modelDict[selfName]['labels']))
        # iterate over all original data and perform classifications to calculate if accuracy with PGN has increased
        for j in range(len(modelDict[selfName]['actualLabels'])):
            currEvidenceDict = dict()
            for k in modelList:
                currEvidenceDict[k] = modelDict[k]['labels'].index(modelDict[k]['pickleData']['results'][j])

            q = infer.query([selfName], currEvidenceDict)

            inferenceClass = modelDict[selfName]['labels'][np.argmax(q[selfName].values)]
            actualClass = modelDict[selfName]['actualLabels'][j]
            confMatrix[modelDict[selfName].index(actualClass), modelDict[selfName].index(inferenceClass)] += 1

        print "%Accuracy with PGN"
        dCalc = SAMTesting.calculateData(modelDict[selfName]['actualLabels'], confMatrix)

        return True
开发者ID:robotology,项目名称:wysiwyd,代码行数:104,代码来源:interactionPGNModel.py

示例15: TestBayesianModelSampling

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_cpds [as 别名]
class TestBayesianModelSampling(unittest.TestCase):
    def setUp(self):
        self.bayesian_model = BayesianModel([('A', 'J'), ('R', 'J'), ('J', 'Q'),
                                             ('J', 'L'), ('G', 'L')])
        cpd_a = TabularCPD('A', 2, [[0.2], [0.8]])
        cpd_r = TabularCPD('R', 2, [[0.4], [0.6]])
        cpd_j = TabularCPD('J', 2,
                           [[0.9, 0.6, 0.7, 0.1],
                            [0.1, 0.4, 0.3, 0.9]],
                           ['R', 'A'], [2, 2])
        cpd_q = TabularCPD('Q', 2,
                           [[0.9, 0.2],
                            [0.1, 0.8]],
                           ['J'], [2])
        cpd_l = TabularCPD('L', 2,
                           [[0.9, 0.45, 0.8, 0.1],
                            [0.1, 0.55, 0.2, 0.9]],
                           ['G', 'J'], [2, 2])
        cpd_g = TabularCPD('G', 2, [[0.6], [0.4]])
        self.bayesian_model.add_cpds(cpd_a, cpd_g, cpd_j, cpd_l, cpd_q, cpd_r)
        self.sampling_inference = BayesianModelSampling(self.bayesian_model)
        self.markov_model = MarkovModel()

    def test_init(self):
        with self.assertRaises(TypeError):
            BayesianModelSampling(self.markov_model)

    def test_forward_sample(self):
        sample = self.sampling_inference.forward_sample(25)
        self.assertEquals(len(sample), 25)
        self.assertEquals(len(sample.columns), 6)
        self.assertIn('A', sample.columns)
        self.assertIn('J', sample.columns)
        self.assertIn('R', sample.columns)
        self.assertIn('Q', sample.columns)
        self.assertIn('G', sample.columns)
        self.assertIn('L', sample.columns)
        self.assertTrue(set(sample.A).issubset({State('A', 0), State('A', 1)}))
        self.assertTrue(set(sample.J).issubset({State('J', 0), State('J', 1)}))
        self.assertTrue(set(sample.R).issubset({State('R', 0), State('R', 1)}))
        self.assertTrue(set(sample.Q).issubset({State('Q', 0), State('Q', 1)}))
        self.assertTrue(set(sample.G).issubset({State('G', 0), State('G', 1)}))
        self.assertTrue(set(sample.L).issubset({State('L', 0), State('L', 1)}))

    def test_rejection_sample_basic(self):
        sample = self.sampling_inference.rejection_sample([State('A', 1), State('J', 1), State('R', 1)], 25)
        self.assertEquals(len(sample), 25)
        self.assertEquals(len(sample.columns), 6)
        self.assertIn('A', sample.columns)
        self.assertIn('J', sample.columns)
        self.assertIn('R', sample.columns)
        self.assertIn('Q', sample.columns)
        self.assertIn('G', sample.columns)
        self.assertIn('L', sample.columns)
        self.assertTrue(set(sample.A).issubset({State('A', 1)}))
        self.assertTrue(set(sample.J).issubset({State('J', 1)}))
        self.assertTrue(set(sample.R).issubset({State('R', 1)}))
        self.assertTrue(set(sample.Q).issubset({State('Q', 0), State('Q', 1)}))
        self.assertTrue(set(sample.G).issubset({State('G', 0), State('G', 1)}))
        self.assertTrue(set(sample.L).issubset({State('L', 0), State('L', 1)}))

    def test_likelihood_weighted_sample(self):
        sample = self.sampling_inference.likelihood_weighted_sample([State('A', 0), State('J', 1), State('R', 0)], 25)
        self.assertEquals(len(sample), 25)
        self.assertEquals(len(sample.columns), 7)
        self.assertIn('A', sample.columns)
        self.assertIn('J', sample.columns)
        self.assertIn('R', sample.columns)
        self.assertIn('Q', sample.columns)
        self.assertIn('G', sample.columns)
        self.assertIn('L', sample.columns)
        self.assertIn('_weight', sample.columns)
        self.assertTrue(set(sample.A).issubset({State('A', 0), State('A', 1)}))
        self.assertTrue(set(sample.J).issubset({State('J', 0), State('J', 1)}))
        self.assertTrue(set(sample.R).issubset({State('R', 0), State('R', 1)}))
        self.assertTrue(set(sample.Q).issubset({State('Q', 0), State('Q', 1)}))
        self.assertTrue(set(sample.G).issubset({State('G', 0), State('G', 1)}))
        self.assertTrue(set(sample.L).issubset({State('L', 0), State('L', 1)}))

    def tearDown(self):
        del self.sampling_inference
        del self.bayesian_model
        del self.markov_model
开发者ID:Sayan-Paul,项目名称:kod,代码行数:85,代码来源:test_Sampling.py


注:本文中的pgmpy.models.BayesianModel.add_cpds方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。