当前位置: 首页>>代码示例>>Python>>正文


Python BayesianModel.node[var][prop_name]方法代码示例

本文整理汇总了Python中pgmpy.models.BayesianModel.node[var][prop_name]方法的典型用法代码示例。如果您正苦于以下问题:Python BayesianModel.node[var][prop_name]方法的具体用法?Python BayesianModel.node[var][prop_name]怎么用?Python BayesianModel.node[var][prop_name]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pgmpy.models.BayesianModel的用法示例。


在下文中一共展示了BayesianModel.node[var][prop_name]方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_model

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import node[var][prop_name] [as 别名]
    def get_model(self):
        """
        Returns the model instance of the ProbModel.

        Return
        ---------------
        model: an instance of BayesianModel.

        Examples
        -------
        >>> reader = ProbModelXMLReader()
        >>> reader.get_model()
        """
        if self.probnet.get('type') == "BayesianNetwork":
            model = BayesianModel(self.probnet['edges'].keys())

            tabular_cpds = []
            cpds = self.probnet['Potentials']
            for cpd in cpds:
                var = list(cpd['Variables'].keys())[0]
                states = self.probnet['Variables'][var]['States']
                evidence = cpd['Variables'][var]
                evidence_card = [len(self.probnet['Variables'][evidence_var]['States'])
                                 for evidence_var in evidence]
                arr = list(map(float, cpd['Values'].split()))
                values = np.array(arr)
                values = values.reshape((len(states), values.size//len(states)))
                tabular_cpds.append(TabularCPD(var, len(states), values, evidence, evidence_card))

            model.add_cpds(*tabular_cpds)

            variables = model.nodes()
            for var in variables:
                for prop_name, prop_value in self.probnet['Variables'][var].items():
                    model.node[var][prop_name] = prop_value

            edges = model.edges()
            for edge in edges:
                for prop_name, prop_value in self.probnet['edges'][edge].items():
                    model.edge[edge[0]][edge[1]][prop_name] = prop_value
            return model
        else:
            raise ValueError("Please specify only Bayesian Network.")
开发者ID:Sayan-Paul,项目名称:kod,代码行数:45,代码来源:ProbModelXML.py


注:本文中的pgmpy.models.BayesianModel.node[var][prop_name]方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。