当前位置: 首页>>代码示例>>Python>>正文


Python BayesianModel.has_edge方法代码示例

本文整理汇总了Python中pgmpy.models.BayesianModel.has_edge方法的典型用法代码示例。如果您正苦于以下问题:Python BayesianModel.has_edge方法的具体用法?Python BayesianModel.has_edge怎么用?Python BayesianModel.has_edge使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pgmpy.models.BayesianModel的用法示例。


在下文中一共展示了BayesianModel.has_edge方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: pdag_to_dag

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import has_edge [as 别名]
    def pdag_to_dag(pdag):
        """Completes a PDAG to a DAG, without adding v-structures, if such a
        completion exists. If no faithful extension is possible, some fully
        oriented DAG that corresponds to the PDAG is returned and a warning is
        generated. This is a static method.

        Parameters
        ----------
        pdag: DirectedGraph
            A directed acyclic graph pattern, consisting in (acyclic) directed edges
            as well as "undirected" edges, represented as both-way edges between
            nodes.

        Returns
        -------
        dag: BayesianModel
            A faithful orientation of pdag, if one exists. Otherwise any
            fully orientated DAG/BayesianModel with the structure of pdag.

        References
        ----------
        [1] Chickering, Learning Equivalence Classes of Bayesian-Network Structures,
            2002; See page 454 (last paragraph) for the algorithm pdag_to_dag
            http://www.jmlr.org/papers/volume2/chickering02a/chickering02a.pdf
        [2] Dor & Tarsi, A simple algorithm to construct a consistent extension
            of a partially oriented graph, 1992,
            http://ftp.cs.ucla.edu/pub/stat_ser/r185-dor-tarsi.pdf

        Examples
        --------
        >>> import pandas as pd
        >>> import numpy as np
        >>> from pgmpy.base import DirectedGraph
        >>> from pgmpy.estimators import ConstraintBasedEstimator
        >>> data = pd.DataFrame(np.random.randint(0, 4, size=(5000, 3)), columns=list('ABD'))
        >>> data['C'] = data['A'] - data['B']
        >>> data['D'] += data['A']
        >>> c = ConstraintBasedEstimator(data)
        >>> pdag = c.skeleton_to_pdag(*c.estimate_skeleton())
        >>> pdag.edges()
        [('B', 'C'), ('D', 'A'), ('A', 'D'), ('A', 'C')]
        >>> c.pdag_to_dag(pdag).edges()
        [('B', 'C'), ('A', 'D'), ('A', 'C')]

        >>> # pdag_to_dag is static:
        ... pdag1 = DirectedGraph([('A', 'B'), ('C', 'B'), ('C', 'D'), ('D', 'C'), ('D', 'A'), ('A', 'D')])
        >>> ConstraintBasedEstimator.pdag_to_dag(pdag1).edges()
        [('D', 'C'), ('C', 'B'), ('A', 'B'), ('A', 'D')]

        >>> # example of a pdag with no faithful extension:
        ... pdag2 = DirectedGraph([('A', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'B')])
        >>> ConstraintBasedEstimator.pdag_to_dag(pdag2).edges()
        UserWarning: PDAG has no faithful extension (= no oriented DAG with the same v-structures as PDAG).
        Remaining undirected PDAG edges oriented arbitrarily.
        [('B', 'C'), ('A', 'B'), ('A', 'C')]
        """

        pdag = pdag.copy()
        dag = BayesianModel()
        dag.add_nodes_from(pdag.nodes())

        # add already directed edges of pdag to dag
        for X, Y in pdag.edges():
            if not pdag.has_edge(Y, X):
                dag.add_edge(X, Y)

        while pdag.number_of_nodes() > 0:
            # find node with (1) no directed outgoing edges and
            #                (2) the set of undirected neighbors is either empty or
            #                    undirected neighbors + parents of X are a clique
            found = False
            for X in pdag.nodes():
                directed_outgoing_edges = set(pdag.successors(X)) - set(pdag.predecessors(X))
                undirected_neighbors = set(pdag.successors(X)) & set(pdag.predecessors(X))
                neighbors_are_clique = all((pdag.has_edge(Y, Z)
                                            for Z in pdag.predecessors(X)
                                            for Y in undirected_neighbors if not Y == Z))

                if not directed_outgoing_edges and \
                        (not undirected_neighbors or neighbors_are_clique):
                    found = True
                    # add all edges of X as outgoing edges to dag
                    for Y in pdag.predecessors(X):
                        dag.add_edge(Y, X)

                    pdag.remove_node(X)
                    break

            if not found:
                warn("PDAG has no faithful extension (= no oriented DAG with the " +
                     "same v-structures as PDAG). Remaining undirected PDAG edges " +
                     "oriented arbitrarily.")
                for X, Y in pdag.edges():
                    if not dag.has_edge(Y, X):
                        try:
                            dag.add_edge(X, Y)
                        except ValueError:
                            pass
                break

#.........这里部分代码省略.........
开发者ID:MariosRichards,项目名称:BES_analysis_code,代码行数:103,代码来源:ConstraintBasedEstimator.py


注:本文中的pgmpy.models.BayesianModel.has_edge方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。