当前位置: 首页>>代码示例>>Python>>正文


Python BayesianModel.add_node方法代码示例

本文整理汇总了Python中pgmpy.models.BayesianModel.add_node方法的典型用法代码示例。如果您正苦于以下问题:Python BayesianModel.add_node方法的具体用法?Python BayesianModel.add_node怎么用?Python BayesianModel.add_node使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pgmpy.models.BayesianModel的用法示例。


在下文中一共展示了BayesianModel.add_node方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: TestBaseModelCreation

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_node [as 别名]
class TestBaseModelCreation(unittest.TestCase):
    def setUp(self):
        self.G = BayesianModel()

    def test_class_init_without_data(self):
        self.assertIsInstance(self.G, nx.DiGraph)

    def test_class_init_with_data_string(self):
        self.g = BayesianModel([('a', 'b'), ('b', 'c')])
        self.assertListEqual(sorted(self.g.nodes()), ['a', 'b', 'c'])
        self.assertListEqual(hf.recursive_sorted(self.g.edges()),
                             [['a', 'b'], ['b', 'c']])

    def test_class_init_with_data_nonstring(self):
        BayesianModel([(1, 2), (2, 3)])

    def test_add_node_string(self):
        self.G.add_node('a')
        self.assertListEqual(self.G.nodes(), ['a'])

    def test_add_node_nonstring(self):
        self.G.add_node(1)

    def test_add_nodes_from_string(self):
        self.G.add_nodes_from(['a', 'b', 'c', 'd'])
        self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c', 'd'])

    def test_add_nodes_from_non_string(self):
        self.G.add_nodes_from([1, 2, 3, 4])

    def test_add_edge_string(self):
        self.G.add_edge('d', 'e')
        self.assertListEqual(sorted(self.G.nodes()), ['d', 'e'])
        self.assertListEqual(self.G.edges(), [('d', 'e')])
        self.G.add_nodes_from(['a', 'b', 'c'])
        self.G.add_edge('a', 'b')
        self.assertListEqual(hf.recursive_sorted(self.G.edges()),
                             [['a', 'b'], ['d', 'e']])

    def test_add_edge_nonstring(self):
        self.G.add_edge(1, 2)

    def test_add_edge_selfloop(self):
        self.assertRaises(ValueError, self.G.add_edge, 'a', 'a')

    def test_add_edge_result_cycle(self):
        self.G.add_edges_from([('a', 'b'), ('a', 'c')])
        self.assertRaises(ValueError, self.G.add_edge, 'c', 'a')

    def test_add_edges_from_string(self):
        self.G.add_edges_from([('a', 'b'), ('b', 'c')])
        self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c'])
        self.assertListEqual(hf.recursive_sorted(self.G.edges()),
                             [['a', 'b'], ['b', 'c']])
        self.G.add_nodes_from(['d', 'e', 'f'])
        self.G.add_edges_from([('d', 'e'), ('e', 'f')])
        self.assertListEqual(sorted(self.G.nodes()),
                             ['a', 'b', 'c', 'd', 'e', 'f'])
        self.assertListEqual(hf.recursive_sorted(self.G.edges()),
                             hf.recursive_sorted([('a', 'b'), ('b', 'c'),
                                                  ('d', 'e'), ('e', 'f')]))

    def test_add_edges_from_nonstring(self):
        self.G.add_edges_from([(1, 2), (2, 3)])

    def test_add_edges_from_self_loop(self):
        self.assertRaises(ValueError, self.G.add_edges_from,
                          [('a', 'a')])

    def test_add_edges_from_result_cycle(self):
        self.assertRaises(ValueError, self.G.add_edges_from,
                          [('a', 'b'), ('b', 'c'), ('c', 'a')])

    def test_update_node_parents_bm_constructor(self):
        self.g = BayesianModel([('a', 'b'), ('b', 'c')])
        self.assertListEqual(self.g.predecessors('a'), [])
        self.assertListEqual(self.g.predecessors('b'), ['a'])
        self.assertListEqual(self.g.predecessors('c'), ['b'])

    def test_update_node_parents(self):
        self.G.add_nodes_from(['a', 'b', 'c'])
        self.G.add_edges_from([('a', 'b'), ('b', 'c')])
        self.assertListEqual(self.G.predecessors('a'), [])
        self.assertListEqual(self.G.predecessors('b'), ['a'])
        self.assertListEqual(self.G.predecessors('c'), ['b'])

    def tearDown(self):
        del self.G
开发者ID:ankurankan,项目名称:pgmpy,代码行数:90,代码来源:test_BayesianModel.py

示例2: BayesianModel

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_node [as 别名]
from pgmpy.models import BayesianModel
from pgmpy.factors import TabularCPD
# Creating the above bayesian network
model = BayesianModel()
model.add_nodes_from(['Rain', 'TrafficJam'])
model.add_edge('Rain', 'TrafficJam')
model.add_edge('Accident', 'TrafficJam')
cpd_rain = TabularCPD('Rain', 2, [[0.4], [0.6]])
cpd_accident = TabularCPD('Accident', 2, [[0.2], [0.8]])
cpd_traffic_jam = TabularCPD('TrafficJam', 2,
                             [[0.9, 0.6, 0.7, 0.1],
                              [0.1, 0.4, 0.3, 0.9]],
                             evidence=['Rain', 'Accident'],
                             evidence_card=[2, 2])
model.add_cpds(cpd_rain, cpd_accident, cpd_traffic_jam)
model.add_node('LongQueues')
model.add_edge('TrafficJam', 'LongQueues')
cpd_long_queues = TabularCPD('LongQueues', 2,
                             [[0.9, 0.2],
                              [0.1, 0.8]],
                             evidence=['TrafficJam'],
                             evidence_card=[2])
model.add_cpds(cpd_long_queues)
model.add_nodes_from(['GettingUpLate', 'LateForSchool'])
model.add_edges_from([('GettingUpLate', 'LateForSchool'),
                      ('TrafficJam', 'LateForSchool')])
cpd_getting_up_late = TabularCPD('GettingUpLate', 2,
                                 [[0.6], [0.4]])
cpd_late_for_school = TabularCPD('LateForSchool', 2,
                                 [[0.9, 0.45, 0.8, 0.1],
                                  [0.1, 0.55, 0.2, 0.9]],
开发者ID:xenron,项目名称:sandbox-da-python,代码行数:33,代码来源:B04016_02_13.py

示例3: TestBayesianModelCPD

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_node [as 别名]
class TestBayesianModelCPD(unittest.TestCase):

    def setUp(self):
        self.G = BayesianModel([('d', 'g'), ('i', 'g'), ('g', 'l'),
                                ('i', 's')])

    def test_active_trail_nodes(self):
        self.assertEqual(sorted(self.G.active_trail_nodes('d')['d']), ['d', 'g', 'l'])
        self.assertEqual(sorted(self.G.active_trail_nodes('i')['i']), ['g', 'i', 'l', 's'])
        self.assertEqual(sorted(self.G.active_trail_nodes(['d', 'i'])['d']), ['d', 'g', 'l'])

    def test_active_trail_nodes_args(self):
        self.assertEqual(sorted(self.G.active_trail_nodes(['d', 'l'], observed='g')['d']), ['d', 'i', 's'])
        self.assertEqual(sorted(self.G.active_trail_nodes(['d', 'l'], observed='g')['l']), ['l'])
        self.assertEqual(sorted(self.G.active_trail_nodes('s', observed=['i', 'l'])['s']), ['s'])
        self.assertEqual(sorted(self.G.active_trail_nodes('s', observed=['d', 'l'])['s']), ['g', 'i', 's'])

    def test_is_active_trail_triplets(self):
        self.assertTrue(self.G.is_active_trail('d', 'l'))
        self.assertTrue(self.G.is_active_trail('g', 's'))
        self.assertFalse(self.G.is_active_trail('d', 'i'))
        self.assertTrue(self.G.is_active_trail('d', 'i', observed='g'))
        self.assertFalse(self.G.is_active_trail('d', 'l', observed='g'))
        self.assertFalse(self.G.is_active_trail('i', 'l', observed='g'))
        self.assertTrue(self.G.is_active_trail('d', 'i', observed='l'))
        self.assertFalse(self.G.is_active_trail('g', 's', observed='i'))

    def test_is_active_trail(self):
        self.assertFalse(self.G.is_active_trail('d', 's'))
        self.assertTrue(self.G.is_active_trail('s', 'l'))
        self.assertTrue(self.G.is_active_trail('d', 's', observed='g'))
        self.assertFalse(self.G.is_active_trail('s', 'l', observed='g'))

    def test_is_active_trail_args(self):
        self.assertFalse(self.G.is_active_trail('s', 'l', 'i'))
        self.assertFalse(self.G.is_active_trail('s', 'l', 'g'))
        self.assertTrue(self.G.is_active_trail('d', 's', 'l'))
        self.assertFalse(self.G.is_active_trail('d', 's', ['i', 'l']))

    def test_get_cpds(self):
        cpd_d = TabularCPD('d', 2, values=np.random.rand(2, 1))
        cpd_i = TabularCPD('i', 2, values=np.random.rand(2, 1))
        cpd_g = TabularCPD('g', 2, values=np.random.rand(2, 4),
                           evidence=['d', 'i'], evidence_card=[2, 2])
        cpd_l = TabularCPD('l', 2, values=np.random.rand(2, 2),
                           evidence=['g'], evidence_card=[2])
        cpd_s = TabularCPD('s', 2, values=np.random.rand(2, 2),
                           evidence=['i'], evidence_card=[2])
        self.G.add_cpds(cpd_d, cpd_i, cpd_g, cpd_l, cpd_s)

        self.assertEqual(self.G.get_cpds('d').variable, 'd')

    def test_get_cpds1(self):
        self.model = BayesianModel([('A', 'AB')])
        cpd_a = TabularCPD('A', 2, values=np.random.rand(2, 1))
        cpd_ab = TabularCPD('AB', 2, values=np.random.rand(2, 2),
                            evidence=['A'], evidence_card=[2])

        self.model.add_cpds(cpd_a, cpd_ab)
        self.assertEqual(self.model.get_cpds('A').variable, 'A')
        self.assertEqual(self.model.get_cpds('AB').variable, 'AB')
        self.assertRaises(ValueError, self.model.get_cpds, 'B')

        self.model.add_node('B')
        self.assertIsNone(self.model.get_cpds('B'))

    def test_add_single_cpd(self):
        cpd_s = TabularCPD('s', 2, np.random.rand(2, 2), ['i'], [2])
        self.G.add_cpds(cpd_s)
        self.assertListEqual(self.G.get_cpds(), [cpd_s])

    def test_add_multiple_cpds(self):
        cpd_d = TabularCPD('d', 2, values=np.random.rand(2, 1))
        cpd_i = TabularCPD('i', 2, values=np.random.rand(2, 1))
        cpd_g = TabularCPD('g', 2, values=np.random.rand(2, 4),
                           evidence=['d', 'i'], evidence_card=[2, 2])
        cpd_l = TabularCPD('l', 2, values=np.random.rand(2, 2),
                           evidence=['g'], evidence_card=[2])
        cpd_s = TabularCPD('s', 2, values=np.random.rand(2, 2),
                           evidence=['i'], evidence_card=[2])

        self.G.add_cpds(cpd_d, cpd_i, cpd_g, cpd_l, cpd_s)
        self.assertEqual(self.G.get_cpds('d'), cpd_d)
        self.assertEqual(self.G.get_cpds('i'), cpd_i)
        self.assertEqual(self.G.get_cpds('g'), cpd_g)
        self.assertEqual(self.G.get_cpds('l'), cpd_l)
        self.assertEqual(self.G.get_cpds('s'), cpd_s)

    def test_check_model(self):
        cpd_g = TabularCPD('g', 2, values=np.array([[0.2, 0.3, 0.4, 0.6],
                                                    [0.8, 0.7, 0.6, 0.4]]),
                           evidence=['d', 'i'], evidence_card=[2, 2])

        cpd_s = TabularCPD('s', 2, values=np.array([[0.2, 0.3],
                                                    [0.8, 0.7]]),
                           evidence=['i'], evidence_card=[2])

        cpd_l = TabularCPD('l', 2, values=np.array([[0.2, 0.3],
                                                    [0.8, 0.7]]),
                           evidence=['g'], evidence_card=[2])
#.........这里部分代码省略.........
开发者ID:MariosRichards,项目名称:BES_analysis_code,代码行数:103,代码来源:test_BayesianModel.py


注:本文中的pgmpy.models.BayesianModel.add_node方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。