本文整理汇总了Python中pgmpy.models.BayesianModel.get_independencies方法的典型用法代码示例。如果您正苦于以下问题:Python BayesianModel.get_independencies方法的具体用法?Python BayesianModel.get_independencies怎么用?Python BayesianModel.get_independencies使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pgmpy.models.BayesianModel
的用法示例。
在下文中一共展示了BayesianModel.get_independencies方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_get_independencies
# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import get_independencies [as 别名]
def test_get_independencies(self):
chain = BayesianModel([('X', 'Y'), ('Y', 'Z')])
self.assertEqual(chain.get_independencies(), Independencies(('X', 'Z', 'Y'), ('Z', 'X', 'Y')))
fork = BayesianModel([('Y', 'X'), ('Y', 'Z')])
self.assertEqual(fork.get_independencies(), Independencies(('X', 'Z', 'Y'), ('Z', 'X', 'Y')))
collider = BayesianModel([('X', 'Y'), ('Z', 'Y')])
self.assertEqual(collider.get_independencies(), Independencies(('X', 'Z'), ('Z', 'X')))
示例2: test_estimate_from_independencies
# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import get_independencies [as 别名]
def test_estimate_from_independencies(self):
ind = Independencies(['B', 'C'], ['A', ['B', 'C'], 'D'])
ind = ind.closure()
model = ConstraintBasedEstimator.estimate_from_independencies("ABCD", ind)
self.assertSetEqual(set(model.edges()),
set([('B', 'D'), ('A', 'D'), ('C', 'D')]))
model1 = BayesianModel([('A', 'C'), ('B', 'C'), ('B', 'D'), ('C', 'E')])
model2 = ConstraintBasedEstimator.estimate_from_independencies(
model1.nodes(),
model1.get_independencies())
self.assertTrue(set(model2.edges()) == set(model1.edges()) or
set(model2.edges()) == set([('B', 'C'), ('A', 'C'), ('C', 'E'), ('D', 'B')]))
示例3: test_build_skeleton
# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import get_independencies [as 别名]
def test_build_skeleton(self):
ind = Independencies(['B', 'C'], ['A', ['B', 'C'], 'D'])
ind = ind.closure()
skel1, sep_sets1 = ConstraintBasedEstimator.build_skeleton("ABCD", ind)
self.assertTrue(self._edge_list_equal(skel1.edges(), [('A', 'D'), ('B', 'D'), ('C', 'D')]))
sep_sets_ref1 = {frozenset({'A', 'C'}): (), frozenset({'A', 'B'}): (), frozenset({'C', 'B'}): ()}
self.assertEqual(sep_sets1, sep_sets_ref1)
model = BayesianModel([('A', 'C'), ('B', 'C'), ('B', 'D'), ('C', 'E')])
skel2, sep_sets2 = ConstraintBasedEstimator.build_skeleton(model.nodes(), model.get_independencies())
self.assertTrue(self._edge_list_equal(skel2, [('D', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'E')]))
sep_sets_ref2 = {frozenset({'D', 'C'}): ('B',),
frozenset({'E', 'B'}): ('C',),
frozenset({'A', 'D'}): (),
frozenset({'E', 'D'}): ('C',),
frozenset({'E', 'A'}): ('C',),
frozenset({'A', 'B'}): ()}
# witnesses/seperators might change on each run, so we cannot compare directly
self.assertEqual(sep_sets2.keys(), sep_sets_ref2.keys())
self.assertEqual([len(v) for v in sorted(sep_sets2.values())],
[len(v) for v in sorted(sep_sets_ref2.values())])
示例4: bayesnet
# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import get_independencies [as 别名]
#.........这里部分代码省略.........
name_belief = VariableElimination(name_model)
import pgmpy
import six # NOQA
def try_query(evidence):
print('--------')
query_vars = ut.setdiff_ordered(varnames, list(evidence.keys()))
evidence_str = ', '.join(pretty_evidence(evidence))
probs = name_belief.query(query_vars, evidence)
factor_list = probs.values()
joint_factor = pgmpy.factors.factor_product(*factor_list)
print('P(' + ', '.join(query_vars) + ' | ' + evidence_str + ')')
# print(six.text_type(joint_factor))
factor = joint_factor # NOQA
# print_factor(factor)
# import utool as ut
print(ut.hz_str([(f._str(phi_or_p='phi')) for f in factor_list]))
for evidence in evidence_dict:
try_query(evidence)
evidence = {'Aij': 1, 'Ajk': 1, 'Aki': 1, 'Ni': 0}
try_query(evidence)
evidence = {'Aij': 0, 'Ajk': 0, 'Aki': 0, 'Ni': 0}
try_query(evidence)
globals()['score_nice'] = score_nice
globals()['name_nice'] = name_nice
globals()['score_basis'] = score_basis
globals()['nid_basis'] = nid_basis
print('Independencies')
print(name_model.get_independencies())
print(name_model.local_independencies([Ni.variable]))
# name_belief = BeliefPropagation(name_model)
# # name_belief = VariableElimination(name_model)
# for case in special_cases:
# test_data = case.drop('Lk', axis=1)
# test_data = test_data.reset_index(drop=True)
# print('----')
# for i in range(test_data.shape[0]):
# evidence = test_data.loc[i].to_dict()
# probs = name_belief.query(['Lk'], evidence)
# factor = probs['Lk']
# probs = factor.values
# evidence_ = evidence.copy()
# evidence_['Li'] = name_nice[evidence['Li']]
# evidence_['Lj'] = name_nice[evidence['Lj']]
# evidence_['Sij'] = score_nice[evidence['Sij']]
# evidence_['Sjk'] = score_nice[evidence['Sjk']]
# nice2_prob = ut.odict(zip(name_nice, probs.tolist()))
# ut.print_python_code('P(Lk | {evidence}) = {cpt}'.format(
# evidence=(ut.repr2(evidence_, explicit=True, nobraces=True, strvals=True)),
# cpt=ut.repr3(nice2_prob, precision=3, align=True, key_order_metric='-val')
# ))
# for case in special_cases:
# test_data = case.drop('Lk', axis=1)
# test_data = test_data.drop('Lj', axis=1)
# test_data = test_data.reset_index(drop=True)
# print('----')
# for i in range(test_data.shape[0]):
# evidence = test_data.loc[i].to_dict()
# query_vars = ['Lk', 'Lj']