当前位置: 首页>>代码示例>>Python>>正文


Python BayesianModel.predict_probability方法代码示例

本文整理汇总了Python中pgmpy.models.BayesianModel.predict_probability方法的典型用法代码示例。如果您正苦于以下问题:Python BayesianModel.predict_probability方法的具体用法?Python BayesianModel.predict_probability怎么用?Python BayesianModel.predict_probability使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pgmpy.models.BayesianModel的用法示例。


在下文中一共展示了BayesianModel.predict_probability方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: TestBayesianModelFitPredict

# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import predict_probability [as 别名]
class TestBayesianModelFitPredict(unittest.TestCase):

    def setUp(self):
        self.model_disconnected = BayesianModel()
        self.model_disconnected.add_nodes_from(['A', 'B', 'C', 'D', 'E'])
        self.model_connected = BayesianModel([('A', 'B'), ('C', 'B'), ('C', 'D'), ('B', 'E')])

        self.model2 = BayesianModel([('A', 'C'), ('B', 'C')])
        self.data1 = pd.DataFrame(data={'A': [0, 0, 1], 'B': [0, 1, 0], 'C': [1, 1, 0]})
        self.data2 = pd.DataFrame(data={'A': [0, np.NaN, 1],
                                        'B': [0, 1, 0],
                                        'C': [1, 1, np.NaN],
                                        'D': [np.NaN, 'Y', np.NaN]})

        # data_link - "https://www.kaggle.com/c/titanic/download/train.csv"
        self.titanic_data = pd.read_csv('pgmpy/tests/test_estimators/testdata/titanic_train.csv', dtype=str)
        self.titanic_data2 = self.titanic_data[["Survived", "Sex", "Pclass"]]

    def test_bayesian_fit(self):
        print(isinstance(BayesianEstimator, BaseEstimator))
        print(isinstance(MaximumLikelihoodEstimator, BaseEstimator))
        self.model2.fit(self.data1, estimator=BayesianEstimator, prior_type="dirichlet", pseudo_counts=[9, 3])
        self.assertEqual(self.model2.get_cpds('B'), TabularCPD('B', 2, [[11.0 / 15], [4.0 / 15]]))

    def test_fit_missing_data(self):
        self.model2.fit(self.data2, state_names={'C': [0, 1]}, complete_samples_only=False)
        cpds = set([TabularCPD('A', 2, [[0.5], [0.5]]),
                    TabularCPD('B', 2, [[2. / 3], [1. / 3]]),
                    TabularCPD('C', 2, [[0, 0.5, 0.5, 0.5], [1, 0.5, 0.5, 0.5]],
                               evidence=['A', 'B'], evidence_card=[2, 2])])
        self.assertSetEqual(cpds, set(self.model2.get_cpds()))

    def test_disconnected_fit(self):
        values = pd.DataFrame(np.random.randint(low=0, high=2, size=(1000, 5)),
                              columns=['A', 'B', 'C', 'D', 'E'])
        self.model_disconnected.fit(values)

        for node in ['A', 'B', 'C', 'D', 'E']:
            cpd = self.model_disconnected.get_cpds(node)
            self.assertEqual(cpd.variable, node)
            np_test.assert_array_equal(cpd.cardinality, np.array([2]))
            value = (values.ix[:, node].value_counts() /
                     values.ix[:, node].value_counts().sum())
            value = value.reindex(sorted(value.index)).values
            np_test.assert_array_equal(cpd.values, value)

    def test_predict(self):
        titanic = BayesianModel()
        titanic.add_edges_from([("Sex", "Survived"), ("Pclass", "Survived")])
        titanic.fit(self.titanic_data2[500:])

        p1 = titanic.predict(self.titanic_data2[["Sex", "Pclass"]][:30])
        p2 = titanic.predict(self.titanic_data2[["Survived", "Pclass"]][:30])
        p3 = titanic.predict(self.titanic_data2[["Survived", "Sex"]][:30])

        p1_res =  np.array(['0', '1', '0', '1', '0', '0', '0', '0', '0', '1', '0', '1', '0',
                            '0', '0', '1', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
                            '0', '0', '0', '0'])
        p2_res = np.array(['male', 'female', 'female', 'female', 'male', 'male', 'male',
                           'male', 'female', 'female', 'female', 'female', 'male', 'male',
                           'male', 'female', 'male', 'female', 'male', 'female', 'male',
                           'female', 'female', 'female', 'male', 'female', 'male', 'male',
                           'female', 'male'])
        p3_res = np.array(['3', '1', '1', '1', '3', '3', '3', '3', '1', '1', '1', '1', '3',
                           '3', '3', '1', '3', '1', '3', '1', '3', '1', '1', '1', '3', '1',
                           '3', '3', '1', '3'])

        np_test.assert_array_equal(p1.values.ravel(), p1_res)
        np_test.assert_array_equal(p2.values.ravel(), p2_res)
        np_test.assert_array_equal(p3.values.ravel(), p3_res)

    def test_connected_predict(self):
        np.random.seed(42)
        values = pd.DataFrame(np.array(np.random.randint(low=0, high=2, size=(1000, 5)),
                                       dtype=str),
                              columns=['A', 'B', 'C', 'D', 'E'])
        fit_data = values[:800]
        predict_data = values[800:].copy()
        self.model_connected.fit(fit_data)
        self.assertRaises(ValueError, self.model_connected.predict, predict_data)
        predict_data.drop('E', axis=1, inplace=True)
        e_predict = self.model_connected.predict(predict_data)
        np_test.assert_array_equal(e_predict.values.ravel(),
                                   np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1,
                                             1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0,
                                             0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0,
                                             0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1,
                                             0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1,
                                             1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1,
                                             1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0,
                                             1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1,
                                             0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1,
                                             1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
                                             1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1,
                                             0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0,
                                             1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1,
                                             1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1,
                                             1, 1, 1, 0], dtype=str))

    def test_connected_predict_probability(self):
#.........这里部分代码省略.........
开发者ID:MariosRichards,项目名称:BES_analysis_code,代码行数:103,代码来源:test_BayesianModel.py


注:本文中的pgmpy.models.BayesianModel.predict_probability方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。