本文整理汇总了Python中pgmpy.models.BayesianModel.add_edge方法的典型用法代码示例。如果您正苦于以下问题:Python BayesianModel.add_edge方法的具体用法?Python BayesianModel.add_edge怎么用?Python BayesianModel.add_edge使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pgmpy.models.BayesianModel
的用法示例。
在下文中一共展示了BayesianModel.add_edge方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: TestBaseModelCreation
# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_edge [as 别名]
class TestBaseModelCreation(unittest.TestCase):
def setUp(self):
self.G = BayesianModel()
def test_class_init_without_data(self):
self.assertIsInstance(self.G, nx.DiGraph)
def test_class_init_with_data_string(self):
self.g = BayesianModel([('a', 'b'), ('b', 'c')])
self.assertListEqual(sorted(self.g.nodes()), ['a', 'b', 'c'])
self.assertListEqual(hf.recursive_sorted(self.g.edges()),
[['a', 'b'], ['b', 'c']])
def test_class_init_with_data_nonstring(self):
BayesianModel([(1, 2), (2, 3)])
def test_add_node_string(self):
self.G.add_node('a')
self.assertListEqual(self.G.nodes(), ['a'])
def test_add_node_nonstring(self):
self.G.add_node(1)
def test_add_nodes_from_string(self):
self.G.add_nodes_from(['a', 'b', 'c', 'd'])
self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c', 'd'])
def test_add_nodes_from_non_string(self):
self.G.add_nodes_from([1, 2, 3, 4])
def test_add_edge_string(self):
self.G.add_edge('d', 'e')
self.assertListEqual(sorted(self.G.nodes()), ['d', 'e'])
self.assertListEqual(self.G.edges(), [('d', 'e')])
self.G.add_nodes_from(['a', 'b', 'c'])
self.G.add_edge('a', 'b')
self.assertListEqual(hf.recursive_sorted(self.G.edges()),
[['a', 'b'], ['d', 'e']])
def test_add_edge_nonstring(self):
self.G.add_edge(1, 2)
def test_add_edge_selfloop(self):
self.assertRaises(ValueError, self.G.add_edge, 'a', 'a')
def test_add_edge_result_cycle(self):
self.G.add_edges_from([('a', 'b'), ('a', 'c')])
self.assertRaises(ValueError, self.G.add_edge, 'c', 'a')
def test_add_edges_from_string(self):
self.G.add_edges_from([('a', 'b'), ('b', 'c')])
self.assertListEqual(sorted(self.G.nodes()), ['a', 'b', 'c'])
self.assertListEqual(hf.recursive_sorted(self.G.edges()),
[['a', 'b'], ['b', 'c']])
self.G.add_nodes_from(['d', 'e', 'f'])
self.G.add_edges_from([('d', 'e'), ('e', 'f')])
self.assertListEqual(sorted(self.G.nodes()),
['a', 'b', 'c', 'd', 'e', 'f'])
self.assertListEqual(hf.recursive_sorted(self.G.edges()),
hf.recursive_sorted([('a', 'b'), ('b', 'c'),
('d', 'e'), ('e', 'f')]))
def test_add_edges_from_nonstring(self):
self.G.add_edges_from([(1, 2), (2, 3)])
def test_add_edges_from_self_loop(self):
self.assertRaises(ValueError, self.G.add_edges_from,
[('a', 'a')])
def test_add_edges_from_result_cycle(self):
self.assertRaises(ValueError, self.G.add_edges_from,
[('a', 'b'), ('b', 'c'), ('c', 'a')])
def test_update_node_parents_bm_constructor(self):
self.g = BayesianModel([('a', 'b'), ('b', 'c')])
self.assertListEqual(self.g.predecessors('a'), [])
self.assertListEqual(self.g.predecessors('b'), ['a'])
self.assertListEqual(self.g.predecessors('c'), ['b'])
def test_update_node_parents(self):
self.G.add_nodes_from(['a', 'b', 'c'])
self.G.add_edges_from([('a', 'b'), ('b', 'c')])
self.assertListEqual(self.G.predecessors('a'), [])
self.assertListEqual(self.G.predecessors('b'), ['a'])
self.assertListEqual(self.G.predecessors('c'), ['b'])
def tearDown(self):
del self.G
示例2: BayesianModel
# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_edge [as 别名]
from pgmpy.models import BayesianModel
from pgmpy.factors import TabularCPD
# Creating the above bayesian network
model = BayesianModel()
model.add_nodes_from(['Rain', 'TrafficJam'])
model.add_edge('Rain', 'TrafficJam')
model.add_edge('Accident', 'TrafficJam')
cpd_rain = TabularCPD('Rain', 2, [[0.4], [0.6]])
cpd_accident = TabularCPD('Accident', 2, [[0.2], [0.8]])
cpd_traffic_jam = TabularCPD('TrafficJam', 2,
[[0.9, 0.6, 0.7, 0.1],
[0.1, 0.4, 0.3, 0.9]],
evidence=['Rain', 'Accident'],
evidence_card=[2, 2])
model.add_cpds(cpd_rain, cpd_accident, cpd_traffic_jam)
model.add_node('LongQueues')
model.add_edge('TrafficJam', 'LongQueues')
cpd_long_queues = TabularCPD('LongQueues', 2,
[[0.9, 0.2],
[0.1, 0.8]],
evidence=['TrafficJam'],
evidence_card=[2])
model.add_cpds(cpd_long_queues)
model.add_nodes_from(['GettingUpLate', 'LateForSchool'])
model.add_edges_from([('GettingUpLate', 'LateForSchool'),
('TrafficJam', 'LateForSchool')])
cpd_getting_up_late = TabularCPD('GettingUpLate', 2,
[[0.6], [0.4]])
cpd_late_for_school = TabularCPD('LateForSchool', 2,
[[0.9, 0.45, 0.8, 0.1],
[0.1, 0.55, 0.2, 0.9]],
示例3: pdag_to_dag
# 需要导入模块: from pgmpy.models import BayesianModel [as 别名]
# 或者: from pgmpy.models.BayesianModel import add_edge [as 别名]
def pdag_to_dag(pdag):
"""Completes a PDAG to a DAG, without adding v-structures, if such a
completion exists. If no faithful extension is possible, some fully
oriented DAG that corresponds to the PDAG is returned and a warning is
generated. This is a static method.
Parameters
----------
pdag: DirectedGraph
A directed acyclic graph pattern, consisting in (acyclic) directed edges
as well as "undirected" edges, represented as both-way edges between
nodes.
Returns
-------
dag: BayesianModel
A faithful orientation of pdag, if one exists. Otherwise any
fully orientated DAG/BayesianModel with the structure of pdag.
References
----------
[1] Chickering, Learning Equivalence Classes of Bayesian-Network Structures,
2002; See page 454 (last paragraph) for the algorithm pdag_to_dag
http://www.jmlr.org/papers/volume2/chickering02a/chickering02a.pdf
[2] Dor & Tarsi, A simple algorithm to construct a consistent extension
of a partially oriented graph, 1992,
http://ftp.cs.ucla.edu/pub/stat_ser/r185-dor-tarsi.pdf
Examples
--------
>>> import pandas as pd
>>> import numpy as np
>>> from pgmpy.base import DirectedGraph
>>> from pgmpy.estimators import ConstraintBasedEstimator
>>> data = pd.DataFrame(np.random.randint(0, 4, size=(5000, 3)), columns=list('ABD'))
>>> data['C'] = data['A'] - data['B']
>>> data['D'] += data['A']
>>> c = ConstraintBasedEstimator(data)
>>> pdag = c.skeleton_to_pdag(*c.estimate_skeleton())
>>> pdag.edges()
[('B', 'C'), ('D', 'A'), ('A', 'D'), ('A', 'C')]
>>> c.pdag_to_dag(pdag).edges()
[('B', 'C'), ('A', 'D'), ('A', 'C')]
>>> # pdag_to_dag is static:
... pdag1 = DirectedGraph([('A', 'B'), ('C', 'B'), ('C', 'D'), ('D', 'C'), ('D', 'A'), ('A', 'D')])
>>> ConstraintBasedEstimator.pdag_to_dag(pdag1).edges()
[('D', 'C'), ('C', 'B'), ('A', 'B'), ('A', 'D')]
>>> # example of a pdag with no faithful extension:
... pdag2 = DirectedGraph([('A', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'B')])
>>> ConstraintBasedEstimator.pdag_to_dag(pdag2).edges()
UserWarning: PDAG has no faithful extension (= no oriented DAG with the same v-structures as PDAG).
Remaining undirected PDAG edges oriented arbitrarily.
[('B', 'C'), ('A', 'B'), ('A', 'C')]
"""
pdag = pdag.copy()
dag = BayesianModel()
dag.add_nodes_from(pdag.nodes())
# add already directed edges of pdag to dag
for X, Y in pdag.edges():
if not pdag.has_edge(Y, X):
dag.add_edge(X, Y)
while pdag.number_of_nodes() > 0:
# find node with (1) no directed outgoing edges and
# (2) the set of undirected neighbors is either empty or
# undirected neighbors + parents of X are a clique
found = False
for X in pdag.nodes():
directed_outgoing_edges = set(pdag.successors(X)) - set(pdag.predecessors(X))
undirected_neighbors = set(pdag.successors(X)) & set(pdag.predecessors(X))
neighbors_are_clique = all((pdag.has_edge(Y, Z)
for Z in pdag.predecessors(X)
for Y in undirected_neighbors if not Y == Z))
if not directed_outgoing_edges and \
(not undirected_neighbors or neighbors_are_clique):
found = True
# add all edges of X as outgoing edges to dag
for Y in pdag.predecessors(X):
dag.add_edge(Y, X)
pdag.remove_node(X)
break
if not found:
warn("PDAG has no faithful extension (= no oriented DAG with the " +
"same v-structures as PDAG). Remaining undirected PDAG edges " +
"oriented arbitrarily.")
for X, Y in pdag.edges():
if not dag.has_edge(Y, X):
try:
dag.add_edge(X, Y)
except ValueError:
pass
break
#.........这里部分代码省略.........